Haohao Sun, Lili Lei, Zhengyu Liu, Liang Ning, Zhe-Min Tan
{"title":"An Online Paleoclimate Data Assimilation With a Deep Learning-Based Network","authors":"Haohao Sun, Lili Lei, Zhengyu Liu, Liang Ning, Zhe-Min Tan","doi":"10.1029/2024MS004675","DOIUrl":null,"url":null,"abstract":"<p>An online paleoclimate data assimilation (PDA) that utilizes climate forecasts from a deep learning-based network (NET) along with assimilation of proxies to reconstruct surface air temperature, is investigated here. The NET is trained on ensemble simulations from the Community Earth System Model-Last Millennium Ensemble. Due to the nonlinear features with high-dimensional input, NET gains better predictive skills compared to the linear inverse model (LIM) in a reduced empirical orthogonal function (EOF) space. Thus, an alternative for online PDA is to couple the NET with the integrated hybrid ensemble Kalman filter (IHEnKF). Moreover, an analog blending strategy is proposed to increase ensemble spread and mitigate filter divergence, which blends the analog ensembles selected from climatological samples based on proxies and cycling ensembles advanced by NET. To account for the underestimated uncertainties of real proxy data, an observation error inflation method is applied, which inflates the proxy error variance based on the comparison between the estimated proxy error variance and its climatological innovation. Consistent results are obtained from the pseudoproxy experiments and the real proxy experiments. The more informative ensemble priors from the online PDA using NET enhance the reconstructions than the online PDA using LIM, and both outperform the offline PDA with randomly sampled climatological ensemble priors. The advantages of online PDA with NET over the online PDA with LIM and offline PDA become more pronounced, as the proxy data become sparser.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 6","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004675","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004675","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
An online paleoclimate data assimilation (PDA) that utilizes climate forecasts from a deep learning-based network (NET) along with assimilation of proxies to reconstruct surface air temperature, is investigated here. The NET is trained on ensemble simulations from the Community Earth System Model-Last Millennium Ensemble. Due to the nonlinear features with high-dimensional input, NET gains better predictive skills compared to the linear inverse model (LIM) in a reduced empirical orthogonal function (EOF) space. Thus, an alternative for online PDA is to couple the NET with the integrated hybrid ensemble Kalman filter (IHEnKF). Moreover, an analog blending strategy is proposed to increase ensemble spread and mitigate filter divergence, which blends the analog ensembles selected from climatological samples based on proxies and cycling ensembles advanced by NET. To account for the underestimated uncertainties of real proxy data, an observation error inflation method is applied, which inflates the proxy error variance based on the comparison between the estimated proxy error variance and its climatological innovation. Consistent results are obtained from the pseudoproxy experiments and the real proxy experiments. The more informative ensemble priors from the online PDA using NET enhance the reconstructions than the online PDA using LIM, and both outperform the offline PDA with randomly sampled climatological ensemble priors. The advantages of online PDA with NET over the online PDA with LIM and offline PDA become more pronounced, as the proxy data become sparser.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.