{"title":"Frequency-Constrained Real-Time Co-Optimisation of Energy and Regulation Reserve Integrated With Battery Energy Storage Systems","authors":"Mohammad Amin Mirzaei, Masood Parvania","doi":"10.1049/stg2.70017","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a real-time co-optimisation framework integrated with automatic generation control (RTC-AGC) for the optimal reallocation of energy and regulation reserves in real-time electricity markets. A rolling-horizon optimisation approach is also proposed to dynamically optimise resource scheduling by reallocating based on forecasted load demand and renewable generation patterns over a moving time window. Inverter-based battery energy storage (IBES) systems are also introduced as flexible resources to regulate frequency deviation in AGC by optimally reallocating up- and down-regulation reserves in the real-time market. The integrated RTC-AGC framework accurately represents the dynamic behaviour of thermal generation units and IBES systems, enabling the precise and cost-efficient reallocation of up- and down-regulation reserves in the real-time market. The proposed model is formulated as a two-stage stochastic mixed-integer linear programming model and solved by the CPLEX solver in GAMS software. The findings highlight that IBES can significantly reduce frequency deviations by 50% while lowering operational costs by 7.13% in power systems integrated with renewable energy resources.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"8 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.70017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Grid","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/stg2.70017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a real-time co-optimisation framework integrated with automatic generation control (RTC-AGC) for the optimal reallocation of energy and regulation reserves in real-time electricity markets. A rolling-horizon optimisation approach is also proposed to dynamically optimise resource scheduling by reallocating based on forecasted load demand and renewable generation patterns over a moving time window. Inverter-based battery energy storage (IBES) systems are also introduced as flexible resources to regulate frequency deviation in AGC by optimally reallocating up- and down-regulation reserves in the real-time market. The integrated RTC-AGC framework accurately represents the dynamic behaviour of thermal generation units and IBES systems, enabling the precise and cost-efficient reallocation of up- and down-regulation reserves in the real-time market. The proposed model is formulated as a two-stage stochastic mixed-integer linear programming model and solved by the CPLEX solver in GAMS software. The findings highlight that IBES can significantly reduce frequency deviations by 50% while lowering operational costs by 7.13% in power systems integrated with renewable energy resources.