Realization of Anosov diffeomorphisms on the torus

IF 1.2 2区 数学 Q1 MATHEMATICS
Tamara Kucherenko, Anthony Quas
{"title":"Realization of Anosov diffeomorphisms on the torus","authors":"Tamara Kucherenko,&nbsp;Anthony Quas","doi":"10.1112/jlms.70194","DOIUrl":null,"url":null,"abstract":"<p>We study area preserving Anosov maps on the two-dimensional torus within a fixed homotopy class. We show that the set of pressure functions for Anosov diffeomorphisms with respect to the geometric potential is equal to the set of pressure functions for the linear Anosov automorphism with respect to Hölder potentials. We use this result to provide a negative answer to the <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mi>α</mi>\n </mrow>\n </msup>\n <annotation>$C^{1+\\alpha }$</annotation>\n </semantics></math> version of the question posed by Rodriguez Hertz on whether two homotopic area-preserving <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$C^\\infty$</annotation>\n </semantics></math> Anosov diffeomorphisms whose geometric potentials have identical pressure functions must be <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$C^\\infty$</annotation>\n </semantics></math> conjugate.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 6","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70194","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study area preserving Anosov maps on the two-dimensional torus within a fixed homotopy class. We show that the set of pressure functions for Anosov diffeomorphisms with respect to the geometric potential is equal to the set of pressure functions for the linear Anosov automorphism with respect to Hölder potentials. We use this result to provide a negative answer to the C 1 + α $C^{1+\alpha }$ version of the question posed by Rodriguez Hertz on whether two homotopic area-preserving C $C^\infty$ Anosov diffeomorphisms whose geometric potentials have identical pressure functions must be C $C^\infty$  conjugate.

环面上Anosov微分同态的实现
研究了固定同伦类中二维环面上的保面积Anosov映射。我们证明了关于几何势的Anosov微分同构的压力函数集等于关于Hölder势的线性Anosov自同构的压力函数集。我们利用这一结果对Rodriguez Hertz关于两个同伦保面积C∞$C^\infty$ Anosov微分同态是否存在的问题的c1 + α $C^{1+\alpha }$版本提供了一个否定的答案其几何势具有相同的压力函数必须是C∞$C^\infty$共轭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信