Classification of area-strict limits of planar BV homeomorphisms

IF 1.2 2区 数学 Q1 MATHEMATICS
Daniel Campbell, Aapo Kauranen, Emanuela Radici
{"title":"Classification of area-strict limits of planar BV homeomorphisms","authors":"Daniel Campbell,&nbsp;Aapo Kauranen,&nbsp;Emanuela Radici","doi":"10.1112/jlms.70172","DOIUrl":null,"url":null,"abstract":"<p>We present a classification of area-strict limits of planar <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <mi>V</mi>\n </mrow>\n <annotation>$BV$</annotation>\n </semantics></math> homeomorphisms. This class of mappings allows for cavitations and fractures but fulfil a suitable generalisation of the INV condition of Müller and Spector (Arch. Rational Mech. Anal. <b>131</b> (1995), no. 1, 1–66). As pointed out by J. Ball, these features are expected in limit configurations of elastic deformations. De Philippis and Pratelli introduced the <i>no-crossing</i> condition which characterises the <span></span><math>\n <semantics>\n <msup>\n <mi>W</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <annotation>$W^{1,p}$</annotation>\n </semantics></math> closure of planar homeomorphisms. In the current paper, we show that a suitable version of this concept is equivalent with a map, <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math>, being the area-strict limit of BV homeomorphisms. This extends our results from Campbell et al. (J. Funct. Anal. <b>285</b> (2023), no. 3, Paper No. 109953, 30), where we proved that the <i>no-crossing BV</i> condition for a BV map was equivalent with the map being the m-strict limit of homeomorphisms (i.e. <span></span><math></math> and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n </mrow>\n <msub>\n <mi>D</mi>\n <mn>1</mn>\n </msub>\n <msub>\n <mi>f</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>|</mo>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <mo>+</mo>\n <mo>|</mo>\n </mrow>\n <msub>\n <mi>D</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>f</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>|</mo>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <mo>|</mo>\n </mrow>\n <msub>\n <mi>D</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mi>f</mi>\n <mo>|</mo>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <mo>+</mo>\n <mo>|</mo>\n </mrow>\n <msub>\n <mi>D</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mi>f</mi>\n <mo>|</mo>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation>$|{D}_{1}{f}_{k}|(\\mathrm{\\Omega})+|{D}_{2}{f}_{k}|(\\mathrm{\\Omega})\\to |{D}_{1}f|(\\mathrm{\\Omega})+|{D}_{2}f|(\\mathrm{\\Omega})$</annotation>\n </semantics></math>). Further, we show that the <i>no-crossing BV</i> condition is equivalent with a seemingly stronger version of the same condition.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 6","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70172","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70172","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a classification of area-strict limits of planar B V $BV$ homeomorphisms. This class of mappings allows for cavitations and fractures but fulfil a suitable generalisation of the INV condition of Müller and Spector (Arch. Rational Mech. Anal. 131 (1995), no. 1, 1–66). As pointed out by J. Ball, these features are expected in limit configurations of elastic deformations. De Philippis and Pratelli introduced the no-crossing condition which characterises the W 1 , p $W^{1,p}$ closure of planar homeomorphisms. In the current paper, we show that a suitable version of this concept is equivalent with a map, f $f$ , being the area-strict limit of BV homeomorphisms. This extends our results from Campbell et al. (J. Funct. Anal. 285 (2023), no. 3, Paper No. 109953, 30), where we proved that the no-crossing BV condition for a BV map was equivalent with the map being the m-strict limit of homeomorphisms (i.e. and | D 1 f k | ( Ω ) + | D 2 f k | ( Ω ) | D 1 f | ( Ω ) + | D 2 f | ( Ω ) $|{D}_{1}{f}_{k}|(\mathrm{\Omega})+|{D}_{2}{f}_{k}|(\mathrm{\Omega})\to |{D}_{1}f|(\mathrm{\Omega})+|{D}_{2}f|(\mathrm{\Omega})$ ). Further, we show that the no-crossing BV condition is equivalent with a seemingly stronger version of the same condition.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

平面BV同胚的面积严格极限分类
给出了平面BV$ BV$同胚的面积严格极限的分类。这类映射允许空化和断裂,但满足了m ller和Spector (Arch)的INV条件的适当推广。合理的机械。《论文集》,第131(1995)号。1 - 66)。正如J. Ball所指出的,这些特征在弹性变形的极限构型中是可以预料到的。De Philippis和Pratelli引入了平面同胚w1,p $W^{1,p}$闭包的无交叉条件。在本文中,我们证明了这个概念的一个合适的版本等价于映射f$ f$,它是BV同胚的面积严格限制。这扩展了坎贝尔等人的结果。285 (2023), no。3、论文编号:109953,30);其中我们证明了BV映射的不交叉BV条件是等价的,该映射是同胚的m严格极限(即和| d1 f k |(Ω) + | d2fk | (Ω)→| d1 f | (Ω) + |D 2 f|(Ω)$ |{D}_{1}{f}_{k}|(\mathrm{\Omega})+|{D}_{2}{f}_{k}|(\mathrm{\Omega})\到|{D}_{1}f|(\mathrm{\Omega})+|{D}_{2}f|(\mathrm{\Omega})$)。进一步,我们证明了无交叉BV条件与一个看起来更强的相同条件是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信