Threshold convergence to steady states for nonlocal reaction-diffusion equations with time delay in bounded domain

IF 2.4 2区 数学 Q1 MATHEMATICS
Ming Mei , Lin Yang , Haifeng Hu , Dinghua Xu
{"title":"Threshold convergence to steady states for nonlocal reaction-diffusion equations with time delay in bounded domain","authors":"Ming Mei ,&nbsp;Lin Yang ,&nbsp;Haifeng Hu ,&nbsp;Dinghua Xu","doi":"10.1016/j.jde.2025.113474","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we aim at studying the asymptotic behavior for the time-delayed nonlocal reaction-diffusion equation for population dynamics with Dirichlet boundary condition in <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. We recognize that there are threshold convergence results of the solutions which depend on the ecological parameters: the spatial diffusion coefficient <span><math><mi>D</mi><mo>&gt;</mo><mn>0</mn></math></span>, the death rate coefficient <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span>, the birth rate coefficient <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span>, and two principal eigenvalues <span><math><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&lt;</mo><mn>1</mn></math></span> (<span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span>) of the linear nonlocal dispersion operators induced by the two different kernels with Dirichlet boundaries, respectively. Precisely, when <span><math><mn>0</mn><mo>&lt;</mo><mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mi>p</mi></mrow><mrow><mi>D</mi><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>δ</mi></mrow></mfrac><mo>&lt;</mo><mn>1</mn></math></span>, we prove that the solution globally converges to the trivial steady state 0 at the exponential rate. When <span><math><mn>1</mn><mo>&lt;</mo><mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mi>p</mi></mrow><mrow><mi>D</mi><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>δ</mi></mrow></mfrac><mo>≤</mo><mi>e</mi></math></span>, we further prove that the solution globally converges to the non-trivial steady state <span><math><mi>ϕ</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> at the exponential rate, and yet this convergence locally holds if <span><math><mi>e</mi><mo>&lt;</mo><mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mi>p</mi></mrow><mrow><mi>D</mi><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>δ</mi></mrow></mfrac><mo>&lt;</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. The convergence rates are also time-exponential. The proof is based on the Fourier transform and the energy method involving the eigenvalue problems for nonlocal dispersion equations. Some new techniques and skills for treating the nonlocality and non-monotonicity with restriction in bounded domain are also proposed. Finally, a number of numerical simulations are carried out, which confirm our theoretical results. For <span><math><mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mi>p</mi></mrow><mrow><mi>D</mi><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>δ</mi></mrow></mfrac><mo>&gt;</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, the solutions are numerically tested to be oscillating.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113474"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005017","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we aim at studying the asymptotic behavior for the time-delayed nonlocal reaction-diffusion equation for population dynamics with Dirichlet boundary condition in ΩRN. We recognize that there are threshold convergence results of the solutions which depend on the ecological parameters: the spatial diffusion coefficient D>0, the death rate coefficient δ>0, the birth rate coefficient p>0, and two principal eigenvalues 0<λi<1 (i=1,2) of the linear nonlocal dispersion operators induced by the two different kernels with Dirichlet boundaries, respectively. Precisely, when 0<(1λ2)pDλ1+δ<1, we prove that the solution globally converges to the trivial steady state 0 at the exponential rate. When 1<(1λ2)pDλ1+δe, we further prove that the solution globally converges to the non-trivial steady state ϕ(x) at the exponential rate, and yet this convergence locally holds if e<(1λ2)pDλ1+δ<e2. The convergence rates are also time-exponential. The proof is based on the Fourier transform and the energy method involving the eigenvalue problems for nonlocal dispersion equations. Some new techniques and skills for treating the nonlocality and non-monotonicity with restriction in bounded domain are also proposed. Finally, a number of numerical simulations are carried out, which confirm our theoretical results. For (1λ2)pDλ1+δ>e2, the solutions are numerically tested to be oscillating.
有界域上具有时滞的非局部反应扩散方程的阈值收敛
在本文中,我们的目的是研究具有Dirichlet边界条件的种群动力学时滞非局部反应扩散方程在Ω∧RN中的渐近行为。我们认识到,解的阈值收敛结果依赖于生态参数:空间扩散系数D>;0,死亡率系数δ>;0,出生率系数p>;0和两个主特征值0<;λi<1 (i=1,2),分别由两个不同的Dirichlet边界核引起的线性非局部色散算子。精确地说,当0<;(1−λ2)pDλ1+δ<;1时,我们证明了解以指数速率全局收敛于平凡稳态0。当1<;(1−λ2)pDλ1+δ≤e时,我们进一步证明了解以指数速率全局收敛于非平凡稳态φ (x),而当e<;(1−λ2)pDλ1+δ<;e2时,这种收敛性局部成立。收敛速度也是时间指数的。基于傅里叶变换和涉及非局部色散方程特征值问题的能量法进行了证明。提出了一些处理有界域非局域性和限制非单调性的新方法和技巧。最后进行了数值模拟,验证了理论结果。对于(1−λ2)pDλ1+δ>e2,数值测试了该解的振荡性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信