Medical management of pancreatic cancer: from personalization to broadening treatment strategies

IF 9.6 1区 医学 Q1 ONCOLOGY
Nelson Dusetti , Jean Baptiste Bachet , Brice Chanez , Cindy Neuzillet , Louis de Mestier , Nicolas Williet , Nicolas Frauhoffer , Remy Nicolle , Alice Boilève , Anthony Turpin , Raphaël Rodriguez , Jérôme Cros , Juan Iovanna , Pascal Hammel
{"title":"Medical management of pancreatic cancer: from personalization to broadening treatment strategies","authors":"Nelson Dusetti ,&nbsp;Jean Baptiste Bachet ,&nbsp;Brice Chanez ,&nbsp;Cindy Neuzillet ,&nbsp;Louis de Mestier ,&nbsp;Nicolas Williet ,&nbsp;Nicolas Frauhoffer ,&nbsp;Remy Nicolle ,&nbsp;Alice Boilève ,&nbsp;Anthony Turpin ,&nbsp;Raphaël Rodriguez ,&nbsp;Jérôme Cros ,&nbsp;Juan Iovanna ,&nbsp;Pascal Hammel","doi":"10.1016/j.ctrv.2025.102973","DOIUrl":null,"url":null,"abstract":"<div><div>Pancreatic ductal adenocarcinoma (PDAC) is one of the most heterogeneous and deadly cancers. This review examines recently implemented strategies to integrate predictive tools and targeted therapies to improve treatments personalization and patient outcomes. Predictive transcriptomic signatures based on machine learning should optimize first-line chemotherapy selection, while organoid-based chemo-profiling could help late-line or non-standard treatments, particularly when transcriptomic signatures are unavailable to guide therapeutic decisions. Liquid biopsies enable real-time, non-invasive monitoring of tumour progression and resistance. Targeted therapies, even limited to a small subset of PDAC patients, exploit specific molecular vulnerabilities and several of those are under clinical evaluation to join PDAC armamentarium. Given PDAC’s biological complexity, a multimodal approach combining predictive tools, functional testing, and molecularly-guided therapies is required to progress. Implementing those strategies in routine practice, combined with technological and clinical advances should enhance the precision, accessibility, and effectiveness of personalized PDAC treatment, as well as expand therapeutic options with new targets.</div></div>","PeriodicalId":9537,"journal":{"name":"Cancer treatment reviews","volume":"138 ","pages":"Article 102973"},"PeriodicalIF":9.6000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer treatment reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305737225000957","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the most heterogeneous and deadly cancers. This review examines recently implemented strategies to integrate predictive tools and targeted therapies to improve treatments personalization and patient outcomes. Predictive transcriptomic signatures based on machine learning should optimize first-line chemotherapy selection, while organoid-based chemo-profiling could help late-line or non-standard treatments, particularly when transcriptomic signatures are unavailable to guide therapeutic decisions. Liquid biopsies enable real-time, non-invasive monitoring of tumour progression and resistance. Targeted therapies, even limited to a small subset of PDAC patients, exploit specific molecular vulnerabilities and several of those are under clinical evaluation to join PDAC armamentarium. Given PDAC’s biological complexity, a multimodal approach combining predictive tools, functional testing, and molecularly-guided therapies is required to progress. Implementing those strategies in routine practice, combined with technological and clinical advances should enhance the precision, accessibility, and effectiveness of personalized PDAC treatment, as well as expand therapeutic options with new targets.
胰腺癌的医疗管理:从个性化到拓宽治疗策略
胰导管腺癌(Pancreatic ductal adencarcinoma, PDAC)是一种异质性和致死率最高的癌症。本文综述了最近实施的整合预测工具和靶向治疗的策略,以改善治疗的个性化和患者的预后。基于机器学习的预测性转录组特征可以优化一线化疗选择,而基于类器官的化学分析可以帮助晚期或非标准治疗,特别是当转录组特征无法指导治疗决策时。液体活检能够实时、无创地监测肿瘤进展和耐药性。靶向治疗,即使仅限于一小部分PDAC患者,利用特定的分子脆弱性,其中一些正在进行临床评估,以加入PDAC的行列。鉴于PDAC的生物学复杂性,需要一种结合预测工具、功能测试和分子引导治疗的多模式方法来取得进展。在常规实践中实施这些策略,结合技术和临床进步,将提高PDAC个性化治疗的准确性、可及性和有效性,并扩大新的治疗目标的治疗选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer treatment reviews
Cancer treatment reviews 医学-肿瘤学
CiteScore
21.40
自引率
0.80%
发文量
109
审稿时长
13 days
期刊介绍: Cancer Treatment Reviews Journal Overview: International journal focused on developments in cancer treatment research Publishes state-of-the-art, authoritative reviews to keep clinicians and researchers informed Regular Sections in Each Issue: Comments on Controversy Tumor Reviews Anti-tumor Treatments New Drugs Complications of Treatment General and Supportive Care Laboratory/Clinic Interface Submission and Editorial System: Online submission and editorial system for Cancer Treatment Reviews
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信