Fiber-optic-guided near-infrared laser exposure induces depolarization of cultured primary sensory neurons and modifies biophysical properties of human Nav1.5 channels
Florian Armăşescu , Bogdan Amuzescu , Roxana-Olimpia Gheorghe , Mihail Ghenghea , Violeta Ristoiu , Jean Ciurea , Ion Gruia
{"title":"Fiber-optic-guided near-infrared laser exposure induces depolarization of cultured primary sensory neurons and modifies biophysical properties of human Nav1.5 channels","authors":"Florian Armăşescu , Bogdan Amuzescu , Roxana-Olimpia Gheorghe , Mihail Ghenghea , Violeta Ristoiu , Jean Ciurea , Ion Gruia","doi":"10.1016/j.jphotobiol.2025.113191","DOIUrl":null,"url":null,"abstract":"<div><div>Photobiomodulation, a therapeutic method promoting wound healing, reduction in inflammation, pain and apoptosis, was widely tested in neurological/psychiatric disorders. In Parkinson's disease positive results have been obtained recently by transcranial or deep-fiber-optic-based near-infrared (NIR) light application. We assessed the effects of NIR stimulation with a 808.5 nm diode laser applied via a multimode fiber with a sharp tip placed over the cell on enzyme-dissociated cultured adult rat primary sensory neurons and human embryo kidney (HEK293) cells stably expressing human voltage-dependent Na<sup>+</sup> channels (Nav1.5) approached via patch-clamp. For each type of cell, specific series of voltage- or current-clamp protocols were applied initially and after 3 min of laser exposure or control conditions. Laser exposure induced in neurons a resting potential depolarization (6.6 ± 1.8 mV vs. 2.4 ± 1.8 mV in control, mean ± SEM, <em>p</em> = 0.0594). In Nav1.5-expressing cells, peak <em>I</em><sub>Na</sub> amplitude slightly increased after laser application (111.2 ± 14.9 % vs. 70.6 ± 10.4 % in control experiments), and in outside-out patches the differences were larger (96.64 ± 5.25 %-laser vs. 37.95 ± 9.14 %-control). Via chemiluminometry we evidenced a delayed increase in ATP production in laser-exposed HEK293 cells. An explanation of these effects is that NIR exposure facilitates ATP production, maintaining an adequate state of Na<sup>+</sup> channels phosphorylation, but we cannot exclude direct polarization effects on macromolecules including ion channels produced by the intense oriented electric field of the laser beam.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"269 ","pages":"Article 113191"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1011134425000946","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Photobiomodulation, a therapeutic method promoting wound healing, reduction in inflammation, pain and apoptosis, was widely tested in neurological/psychiatric disorders. In Parkinson's disease positive results have been obtained recently by transcranial or deep-fiber-optic-based near-infrared (NIR) light application. We assessed the effects of NIR stimulation with a 808.5 nm diode laser applied via a multimode fiber with a sharp tip placed over the cell on enzyme-dissociated cultured adult rat primary sensory neurons and human embryo kidney (HEK293) cells stably expressing human voltage-dependent Na+ channels (Nav1.5) approached via patch-clamp. For each type of cell, specific series of voltage- or current-clamp protocols were applied initially and after 3 min of laser exposure or control conditions. Laser exposure induced in neurons a resting potential depolarization (6.6 ± 1.8 mV vs. 2.4 ± 1.8 mV in control, mean ± SEM, p = 0.0594). In Nav1.5-expressing cells, peak INa amplitude slightly increased after laser application (111.2 ± 14.9 % vs. 70.6 ± 10.4 % in control experiments), and in outside-out patches the differences were larger (96.64 ± 5.25 %-laser vs. 37.95 ± 9.14 %-control). Via chemiluminometry we evidenced a delayed increase in ATP production in laser-exposed HEK293 cells. An explanation of these effects is that NIR exposure facilitates ATP production, maintaining an adequate state of Na+ channels phosphorylation, but we cannot exclude direct polarization effects on macromolecules including ion channels produced by the intense oriented electric field of the laser beam.
期刊介绍:
The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field.
The scope includes:
- Bioluminescence
- Chronobiology
- DNA repair
- Environmental photobiology
- Nanotechnology in photobiology
- Photocarcinogenesis
- Photochemistry of biomolecules
- Photodynamic therapy
- Photomedicine
- Photomorphogenesis
- Photomovement
- Photoreception
- Photosensitization
- Photosynthesis
- Phototechnology
- Spectroscopy of biological systems
- UV and visible radiation effects and vision.