Co-annealing of PECVD boron emitters and poly-Si passivating contacts for leaner TOPCon solar cell fabrication

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
E. Genç , J. Hurni , S. Libraro , C. Allebé , B. Paviet-Salomon , C. Ballif , A. Morisset , F.-J. Haug
{"title":"Co-annealing of PECVD boron emitters and poly-Si passivating contacts for leaner TOPCon solar cell fabrication","authors":"E. Genç ,&nbsp;J. Hurni ,&nbsp;S. Libraro ,&nbsp;C. Allebé ,&nbsp;B. Paviet-Salomon ,&nbsp;C. Ballif ,&nbsp;A. Morisset ,&nbsp;F.-J. Haug","doi":"10.1016/j.solmat.2025.113713","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the feasibility of a single-step annealing process for tunnel oxide passivating contact (TOPCon) solar cell fabrication to replace the conventional two-step approach. We present a novel method using a single thermal treatment to simultaneously form the boron emitter at the front and poly-Si-based passivating contact at the rear of the device. Both are based on layers deposited by plasma-enhanced chemical vapor deposition (PECVD). First, we tailor the boron emitter profile. We achieved boron emitter profiles with surface concentrations ranging from <span><math><mrow><mn>3</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>19</mn></mrow></msup><mtext>to</mtext><mn>1</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>20</mn></mrow></msup><msup><mrow><mtext>cm</mtext></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> and depths between 100 and 600 nm by adjusting the deposition parameters and annealing conditions. Secondly, we show that <span><math><mi>n</mi></math></span>-type poly-Si layers are suitable for co-annealing when an additional N<sub>2</sub>O plasma treatment is applied to tunnel oxide formed by exposure to UV-O<sub>3</sub>. This approach enables the achievement of <span><math><mrow><mi>i</mi><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi><mi>c</mi></mrow></msub></mrow></math></span> up to 720 mV and contact resistivity <span><math><mrow><mo>≤</mo><mn>100</mn><mstyle><mi>m</mi><mi>Ω</mi></mstyle><mspace></mspace><msup><mrow><mstyle><mi>c</mi><mi>m</mi></mstyle></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. Finally, we demonstrate the viability of the co-annealing process with a proof-of-concept solar cell, which shows a promising power conversion efficiency of 21%.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"292 ","pages":"Article 113713"},"PeriodicalIF":6.3000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825003149","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the feasibility of a single-step annealing process for tunnel oxide passivating contact (TOPCon) solar cell fabrication to replace the conventional two-step approach. We present a novel method using a single thermal treatment to simultaneously form the boron emitter at the front and poly-Si-based passivating contact at the rear of the device. Both are based on layers deposited by plasma-enhanced chemical vapor deposition (PECVD). First, we tailor the boron emitter profile. We achieved boron emitter profiles with surface concentrations ranging from 3×1019to1×1020cm3 and depths between 100 and 600 nm by adjusting the deposition parameters and annealing conditions. Secondly, we show that n-type poly-Si layers are suitable for co-annealing when an additional N2O plasma treatment is applied to tunnel oxide formed by exposure to UV-O3. This approach enables the achievement of iVoc up to 720 mV and contact resistivity 100mΩcm2. Finally, we demonstrate the viability of the co-annealing process with a proof-of-concept solar cell, which shows a promising power conversion efficiency of 21%.
PECVD硼发射体和多晶硅钝化触点的共退火,用于更薄的TOPCon太阳能电池制造
本研究探讨了隧道氧化物钝化接触(TOPCon)太阳能电池单步退火工艺的可行性,以取代传统的两步退火工艺。我们提出了一种新的方法,使用单一的热处理,同时形成硼发射器在前面和多晶硅基钝化触点在后面的装置。两者都是基于等离子体增强化学气相沉积(PECVD)沉积的层。首先,我们定制硼发射器的轮廓。通过调整沉积参数和退火条件,我们获得了表面浓度为3×1019to1×1020cm−3,深度为100 ~ 600 nm的硼发射器轮廓。其次,我们发现当对UV-O3暴露形成的隧道氧化物进行额外的N2O等离子体处理时,n型多晶硅层适合于共退火。这种方法可以实现高达720 mV的iVoc和接触电阻率≤100mΩcm2。最后,我们用一个概念验证太阳能电池证明了共退火工艺的可行性,该电池显示出21%的有希望的功率转换效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信