{"title":"Internal erosion of sandy gravels and occurrence of open-framework gravels in the subsoil of a river dike","authors":"Stéphane Bonelli , Laurence Girolami","doi":"10.1016/j.gete.2025.100690","DOIUrl":null,"url":null,"abstract":"<div><div>When a river dike is built on a sandy gravel paleo-valley, successive floods can induce internal erosion. This is the subject of this work, with a finite element analysis of a river dike system. This type of analysis makes it possible to find artesian and uplift zones in the protected floodplain, an element to be integrated into flood hazard mapping. The study area is the River Agly in southern France, where numerous leaks, sand boils and sinkholes have been observed along the dikes. The aim is to better understand the origin of these surface signatures, as well as the cause of the presence of open-framework gravel in the subsurface. A suffusion model for sandy gravel was used to describe internal erosion. Internal erosion effectively transforms the sandy gravel into gravel, revealing open-framework gravel zones in the paleo-valley. Contact erosion in gravel can be triggered by suffusion, showing that new models coupling suffusion and contact erosion are needed to model internal erosion in sandy gravels.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"42 ","pages":"Article 100690"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380825000553","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
When a river dike is built on a sandy gravel paleo-valley, successive floods can induce internal erosion. This is the subject of this work, with a finite element analysis of a river dike system. This type of analysis makes it possible to find artesian and uplift zones in the protected floodplain, an element to be integrated into flood hazard mapping. The study area is the River Agly in southern France, where numerous leaks, sand boils and sinkholes have been observed along the dikes. The aim is to better understand the origin of these surface signatures, as well as the cause of the presence of open-framework gravel in the subsurface. A suffusion model for sandy gravel was used to describe internal erosion. Internal erosion effectively transforms the sandy gravel into gravel, revealing open-framework gravel zones in the paleo-valley. Contact erosion in gravel can be triggered by suffusion, showing that new models coupling suffusion and contact erosion are needed to model internal erosion in sandy gravels.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.