Solution of Helmholtz eigenvalue problems with non-regular domains using the direct interpolation technique

Q1 Mathematics
Carlos Friedrich Loeffler , Luciano de Oliveira Castro Lara , Hercules de Melo Barcelos , João Paulo Barbosa
{"title":"Solution of Helmholtz eigenvalue problems with non-regular domains using the direct interpolation technique","authors":"Carlos Friedrich Loeffler ,&nbsp;Luciano de Oliveira Castro Lara ,&nbsp;Hercules de Melo Barcelos ,&nbsp;João Paulo Barbosa","doi":"10.1016/j.padiff.2025.101235","DOIUrl":null,"url":null,"abstract":"<div><div>This work aims to evaluate the performance of the Direct Interpolation Boundary Element Method solving Helmholtz problems that present no regular geometric shapes. Using the radial basis functions, the Direct Interpolation Method approximates the non-self-adjoint kernel of the domain integral equations, which appear in many partial differential equations of mathematics, physics, and engineering. Modeling the Helmholtz Equation, the Direct Interpolation Method approximates the inertia term by a sequence of radial basis functions. The technique has been used successfully in Poisson, Diffusive-advective, and Helmholtz problems, considering regular geometries and taking analytical solutions as a reference for performance evaluation. This paper evaluates the effects of the slenderness of the domain and the introduction of cuts on the boundary regarding the accuracy. Reference solutions are generated through Finite Element Method simulations using fine meshes.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101235"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This work aims to evaluate the performance of the Direct Interpolation Boundary Element Method solving Helmholtz problems that present no regular geometric shapes. Using the radial basis functions, the Direct Interpolation Method approximates the non-self-adjoint kernel of the domain integral equations, which appear in many partial differential equations of mathematics, physics, and engineering. Modeling the Helmholtz Equation, the Direct Interpolation Method approximates the inertia term by a sequence of radial basis functions. The technique has been used successfully in Poisson, Diffusive-advective, and Helmholtz problems, considering regular geometries and taking analytical solutions as a reference for performance evaluation. This paper evaluates the effects of the slenderness of the domain and the introduction of cuts on the boundary regarding the accuracy. Reference solutions are generated through Finite Element Method simulations using fine meshes.
非正则域Helmholtz特征值问题的直接插值解法
本研究旨在评估直接插值边界元法在求解无规则几何形状的亥姆霍兹问题时的性能。直接插值方法利用径向基函数逼近域积分方程的非自伴随核,这在许多数学、物理和工程的偏微分方程中都有出现。直接插值法以亥姆霍兹方程为模型,通过一系列径向基函数逼近惯性项。该技术已成功地应用于泊松、扩散-顺流和亥姆霍兹问题,考虑正则几何并以解析解作为性能评价的参考。本文评价了区域长细度和边界上切割的引入对精度的影响。参考解是通过精细网格的有限元模拟生成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信