Zhengkai Tu, Sourabh J. Choure, Mun Hong Fong, Jihye Roh, Itai Levin, Kevin Yu, Joonyoung F. Joung, Nathan Morgan, Shih-Cheng Li, Xiaoqi Sun, Huiqian Lin, Mark Murnin, Jordan P. Liles, Thomas J. Struble, Michael E. Fortunato, Mengjie Liu, William H. Green, Klavs F. Jensen and Connor W. Coley*,
{"title":"ASKCOS: Open-Source, Data-Driven Synthesis Planning","authors":"Zhengkai Tu, Sourabh J. Choure, Mun Hong Fong, Jihye Roh, Itai Levin, Kevin Yu, Joonyoung F. Joung, Nathan Morgan, Shih-Cheng Li, Xiaoqi Sun, Huiqian Lin, Mark Murnin, Jordan P. Liles, Thomas J. Struble, Michael E. Fortunato, Mengjie Liu, William H. Green, Klavs F. Jensen and Connor W. Coley*, ","doi":"10.1021/acs.accounts.5c0015510.1021/acs.accounts.5c00155","DOIUrl":null,"url":null,"abstract":"<p >The advancement of machine learning and the availability of large-scale reaction datasets have accelerated the development of data-driven models for computer-aided synthesis planning (CASP) in the past decade. In this Account, we describe the range of data-driven methods and models that have been incorporated into the newest version of ASKCOS, an open-source software suite for synthesis planning that we have been developing since 2016. This ongoing effort has been driven by the importance of bridging the gap between research and development, making research advances available through a freely available practical tool. ASKCOS integrates modules for retrosynthetic planning, modules for complementary capabilities of condition prediction and reaction product prediction, and several supplementary modules and utilities with various roles in synthesis planning. For retrosynthetic planning, we have developed an Interactive Path Planner (IPP) for user-guided search as well as a Tree Builder for automatic planning with two well-known tree search algorithms, Monte Carlo Tree Search (MCTS) and Retro*. Four one-step retrosynthesis models covering template-based and template-free strategies form the basis of retrosynthetic predictions and can be used simultaneously to combine their advantages and propose diverse suggestions. Strategies for assessing the feasibility of proposed reaction steps and evaluating the full pathways are built on top of several pioneering efforts that we have made in the subtasks of reaction condition recommendation, pathway scoring and clustering, and the prediction of reaction outcomes including the major product, impurities, site selectivity, and regioselectivity. In addition, we have also developed auxiliary capabilities in ASKCOS based on our past and ongoing work for solubility prediction and quantum mechanical descriptor prediction, which can provide more insight into the suitability of proposed reaction solvents or the hypothetical selectivity of desired transformations. For each of these capabilities, we highlight its relevance in the context of synthesis planning and present a comprehensive overview of how it is built on top of not only our work but also of other recent advancements in the field. We also describe in detail how chemists can easily interact with these capabilities via user-friendly interfaces. ASKCOS has assisted hundreds of medicinal, synthetic, and process chemists in their day-to-day tasks by complementing expert decision making and route ideation. It is our belief that CASP tools are an important part of modern chemistry research and offer ever-increasing utility and accessibility.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"58 11","pages":"1764–1775 1764–1775"},"PeriodicalIF":16.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.accounts.5c00155","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of machine learning and the availability of large-scale reaction datasets have accelerated the development of data-driven models for computer-aided synthesis planning (CASP) in the past decade. In this Account, we describe the range of data-driven methods and models that have been incorporated into the newest version of ASKCOS, an open-source software suite for synthesis planning that we have been developing since 2016. This ongoing effort has been driven by the importance of bridging the gap between research and development, making research advances available through a freely available practical tool. ASKCOS integrates modules for retrosynthetic planning, modules for complementary capabilities of condition prediction and reaction product prediction, and several supplementary modules and utilities with various roles in synthesis planning. For retrosynthetic planning, we have developed an Interactive Path Planner (IPP) for user-guided search as well as a Tree Builder for automatic planning with two well-known tree search algorithms, Monte Carlo Tree Search (MCTS) and Retro*. Four one-step retrosynthesis models covering template-based and template-free strategies form the basis of retrosynthetic predictions and can be used simultaneously to combine their advantages and propose diverse suggestions. Strategies for assessing the feasibility of proposed reaction steps and evaluating the full pathways are built on top of several pioneering efforts that we have made in the subtasks of reaction condition recommendation, pathway scoring and clustering, and the prediction of reaction outcomes including the major product, impurities, site selectivity, and regioselectivity. In addition, we have also developed auxiliary capabilities in ASKCOS based on our past and ongoing work for solubility prediction and quantum mechanical descriptor prediction, which can provide more insight into the suitability of proposed reaction solvents or the hypothetical selectivity of desired transformations. For each of these capabilities, we highlight its relevance in the context of synthesis planning and present a comprehensive overview of how it is built on top of not only our work but also of other recent advancements in the field. We also describe in detail how chemists can easily interact with these capabilities via user-friendly interfaces. ASKCOS has assisted hundreds of medicinal, synthetic, and process chemists in their day-to-day tasks by complementing expert decision making and route ideation. It is our belief that CASP tools are an important part of modern chemistry research and offer ever-increasing utility and accessibility.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.