Oxygen isotope fractionation during anaerobic ammonium oxidation by the marine representative Candidatus Scalindua sp.

Kanae Kobayashi, Kazuya Nishina, Keitaro Fukushima, Yuji Onishi, Akiko Makabe, Mamoru Oshiki, Keisuke Koba, Satoshi Okabe
{"title":"Oxygen isotope fractionation during anaerobic ammonium oxidation by the marine representative Candidatus Scalindua sp.","authors":"Kanae Kobayashi, Kazuya Nishina, Keitaro Fukushima, Yuji Onishi, Akiko Makabe, Mamoru Oshiki, Keisuke Koba, Satoshi Okabe","doi":"10.1093/ismejo/wraf115","DOIUrl":null,"url":null,"abstract":"Analyzing the nitrogen (15ε) and oxygen (18ε) isotope effects of anaerobic ammonium oxidation (anammox) is essential for accurately assessing its potential contribution to fixed-N losses in the ocean, yet the 18ε of anammox remains unexplored. Here, we determined the previously unexplored 18ε of anammox using a highly enriched culture of the marine anammox species “Ca. Scalindua sp”. Because Scalindua significantly accelerated oxygen isotope exchange between NO2- and H2O, we introduced a new rate constant for anammox-mediated oxygen isotope exchange (keq, AMX = 8.44 ~ 13.56 ×10-2 h-1), which is substantially faster than abiotic oxygen isotope exchange (keq, abio = 1.13 ×10-2 h-1), into a numerical model to estimate the 18ε during anammox. Based on our experimental results, we successfully determined the 18ε associated with: (1) conversion of NO2- to N2 (18εNO2-→N2 = 10.6 ~ 16.1‰), (2) NO2- oxidation to NO3- (18εNO2-→NO3- = -2.9 ~ -11.0‰, inverse fractionation), (3) incorporation of oxygen from water during NO2- oxidation to NO3- (18εH2O = 16.4 ~ 19.2‰). Our study underscores the possibility that unique anammox oxygen isotope signals may be masked due to substantial anammox-mediated oxygen isotope exchange between NO2- and H2O. Therefore, careful consideration is required when utilizing δ18ONO3- and δ18ONO2- as geochemical markers to assess the potential contribution of anammox to fixed-N losses in the ocean.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Analyzing the nitrogen (15ε) and oxygen (18ε) isotope effects of anaerobic ammonium oxidation (anammox) is essential for accurately assessing its potential contribution to fixed-N losses in the ocean, yet the 18ε of anammox remains unexplored. Here, we determined the previously unexplored 18ε of anammox using a highly enriched culture of the marine anammox species “Ca. Scalindua sp”. Because Scalindua significantly accelerated oxygen isotope exchange between NO2- and H2O, we introduced a new rate constant for anammox-mediated oxygen isotope exchange (keq, AMX = 8.44 ~ 13.56 ×10-2 h-1), which is substantially faster than abiotic oxygen isotope exchange (keq, abio = 1.13 ×10-2 h-1), into a numerical model to estimate the 18ε during anammox. Based on our experimental results, we successfully determined the 18ε associated with: (1) conversion of NO2- to N2 (18εNO2-→N2 = 10.6 ~ 16.1‰), (2) NO2- oxidation to NO3- (18εNO2-→NO3- = -2.9 ~ -11.0‰, inverse fractionation), (3) incorporation of oxygen from water during NO2- oxidation to NO3- (18εH2O = 16.4 ~ 19.2‰). Our study underscores the possibility that unique anammox oxygen isotope signals may be masked due to substantial anammox-mediated oxygen isotope exchange between NO2- and H2O. Therefore, careful consideration is required when utilizing δ18ONO3- and δ18ONO2- as geochemical markers to assess the potential contribution of anammox to fixed-N losses in the ocean.
海洋代表Candidatus Scalindua sp.厌氧氨氧化过程中的氧同位素分馏。
分析厌氧氨氧化(anammox)的氮(15ε)和氧(18ε)同位素效应对于准确评估其对海洋中固定氮损失的潜在贡献至关重要,但厌氧氨氧化(anammox)的18ε仍未被探索。在这里,我们利用高度富集的海洋厌氧氨氧化物种“Ca. Scalindua sp”的培养物确定了以前未开发的厌氧氨氧化的18ε。由于Scalindua能显著加速NO2-和H2O之间的氧同位素交换,我们引入了一个新的厌氧氨氧化介导的氧同位素交换速率常数(keq, AMX = 8.44 ~ 13.56 ×10-2 h-1),该速率常数比非生物氧同位素交换速率(keq, abio = 1.13 ×10-2 h-1)要快得多,用于厌氧氨氧化过程的18ε估算。根据实验结果,我们成功地确定了18ε与:(1)NO2-转化为N2 (18εNO2-→N2 = 10.6 ~ 16.1‰),(2)NO2-氧化为NO3- (18εNO2-→NO3- = -2.9 ~ -11.0‰,反分馏),(3)NO2-氧化为NO3-过程中水中氧气的掺入(18ε h2o = 16.4 ~ 19.2‰)的关系。我们的研究强调了独特的厌氧氨氧化氧同位素信号可能被掩盖的可能性,因为大量的厌氧氨氧化介导的NO2-和H2O之间的氧同位素交换。因此,在利用δ18ONO3-和δ18ONO2-作为地球化学标记来评估厌氧氨氧化对海洋中固定氮损失的潜在贡献时,需要仔细考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信