Thomas M. Evans-Soma, David K. Sing, Joanna K. Barstow, Anjali A. A. Piette, Jake Taylor, Joshua D. Lothringer, Henrique Reggiani, Jayesh M. Goyal, Eva-Maria Ahrer, Nathan J. Mayne, Zafar Rustamkulov, Tiffany Kataria, Duncan A. Christie, Cyril Gapp, Jiayin Dong, Daniel Foreman-Mackey, Soichiro Hattori, Mark S. Marley
{"title":"SiO and a super-stellar C/O ratio in the atmosphere of the giant exoplanet WASP-121 b","authors":"Thomas M. Evans-Soma, David K. Sing, Joanna K. Barstow, Anjali A. A. Piette, Jake Taylor, Joshua D. Lothringer, Henrique Reggiani, Jayesh M. Goyal, Eva-Maria Ahrer, Nathan J. Mayne, Zafar Rustamkulov, Tiffany Kataria, Duncan A. Christie, Cyril Gapp, Jiayin Dong, Daniel Foreman-Mackey, Soichiro Hattori, Mark S. Marley","doi":"10.1038/s41550-025-02513-x","DOIUrl":null,"url":null,"abstract":"<p>Refractory elements such as iron, magnesium and silicon can be detected in the atmospheres of ultrahot giant planets. This provides an opportunity to quantify the amount of refractory material accreted during formation, along with volatile gases and ices. However, simultaneous detections of refractories and volatiles have proved challenging, as the most prominent spectral features of associated atoms and molecules span a broad wavelength range. Here, using a single JWST observation of the ultrahot giant planet WASP-121 b, we report detections of H<sub>2</sub>O (5.5–13.5<i>σ</i>), CO (10.8–12.8<i>σ</i>) and SiO (5.7–6.2<i>σ</i>) in the planet’s dayside atmosphere and CH<sub>4</sub> (3.1–5.1<i>σ</i>) in the nightside atmosphere. We measure super-stellar values for the atmospheric C/H, O/H, Si/H and C/O ratios, which point to the joint importance of pebbles and planetesimals in giant planet formation. The CH<sub>4</sub>-rich nightside composition is also indicative of dynamical processes, such as strong vertical mixing, having a profound influence on the chemistry of ultrahot giant planets.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"16 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-025-02513-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Refractory elements such as iron, magnesium and silicon can be detected in the atmospheres of ultrahot giant planets. This provides an opportunity to quantify the amount of refractory material accreted during formation, along with volatile gases and ices. However, simultaneous detections of refractories and volatiles have proved challenging, as the most prominent spectral features of associated atoms and molecules span a broad wavelength range. Here, using a single JWST observation of the ultrahot giant planet WASP-121 b, we report detections of H2O (5.5–13.5σ), CO (10.8–12.8σ) and SiO (5.7–6.2σ) in the planet’s dayside atmosphere and CH4 (3.1–5.1σ) in the nightside atmosphere. We measure super-stellar values for the atmospheric C/H, O/H, Si/H and C/O ratios, which point to the joint importance of pebbles and planetesimals in giant planet formation. The CH4-rich nightside composition is also indicative of dynamical processes, such as strong vertical mixing, having a profound influence on the chemistry of ultrahot giant planets.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.