Quantifying the Effects of Geometric Parameters on the Elastic Properties of Multilayer Graphene Platelet Films

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Penghao Qi, Xindong Chen, Hanxing Zhu, Yongtao Lyu, Bu Zhang, Qing Peng, Xiqiao Feng, Tongxiang Fan, Di Zhang
{"title":"Quantifying the Effects of Geometric Parameters on the Elastic Properties of Multilayer Graphene Platelet Films","authors":"Penghao Qi, Xindong Chen, Hanxing Zhu, Yongtao Lyu, Bu Zhang, Qing Peng, Xiqiao Feng, Tongxiang Fan, Di Zhang","doi":"10.1002/adma.202502546","DOIUrl":null,"url":null,"abstract":"Multilayer graphene platelet films (MGPFs) are widely studied for their exceptional mechanical, electrical, and chemical properties. The elastic properties and deformation mechanisms of MGPFs are highly sensitive to their geometric parameters, including graphene platelet size, graphene area fraction, and layer count. Despite extensive experimental and theoretical efforts, systematically quantifying these effects remains a significant challenge, severely hindering the design of high-performance MGPFs. Here, realistic random 3D periodic representative volume element (RVE) models of MGPFs are constructed to perform simulations, quantify the effects of different geometric parameters on all their five independent elastic properties, and uncover the dominant deformation mechanisms. The results reveal that the dimensionless platelet size, graphene area fraction, and number of platelet layers significantly affect the elastic properties, with detailed quantifications provided for their relationships. The effects of defects on the elastic properties are also explored, offering insights into the dominant deformation mechanisms. Validation against experimental data confirms that the developed RVE models and dimensionless results apply to various multilayer laminate composites, including MGPFs, MXene, graphene oxide films, and nacre-like materials. The findings provide a robust framework and pave the way for optimizing the design of MGPFs and other laminate composites, enabling their potential in diverse applications.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"28 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202502546","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multilayer graphene platelet films (MGPFs) are widely studied for their exceptional mechanical, electrical, and chemical properties. The elastic properties and deformation mechanisms of MGPFs are highly sensitive to their geometric parameters, including graphene platelet size, graphene area fraction, and layer count. Despite extensive experimental and theoretical efforts, systematically quantifying these effects remains a significant challenge, severely hindering the design of high-performance MGPFs. Here, realistic random 3D periodic representative volume element (RVE) models of MGPFs are constructed to perform simulations, quantify the effects of different geometric parameters on all their five independent elastic properties, and uncover the dominant deformation mechanisms. The results reveal that the dimensionless platelet size, graphene area fraction, and number of platelet layers significantly affect the elastic properties, with detailed quantifications provided for their relationships. The effects of defects on the elastic properties are also explored, offering insights into the dominant deformation mechanisms. Validation against experimental data confirms that the developed RVE models and dimensionless results apply to various multilayer laminate composites, including MGPFs, MXene, graphene oxide films, and nacre-like materials. The findings provide a robust framework and pave the way for optimizing the design of MGPFs and other laminate composites, enabling their potential in diverse applications.

Abstract Image

几何参数对多层石墨烯血小板膜弹性性能影响的量化研究
多层石墨烯血小板膜(MGPFs)因其优异的机械、电气和化学性能而被广泛研究。石墨烯血小板大小、石墨烯面积分数和层数等几何参数对mgpf的弹性性能和变形机制高度敏感。尽管进行了大量的实验和理论研究,但系统地量化这些效应仍然是一个重大挑战,严重阻碍了高性能MGPFs的设计。本文建立了真实的随机三维周期代表性体积元(RVE)模型,对MGPFs进行了仿真,量化了不同几何参数对其五种独立弹性性能的影响,揭示了主要的变形机制。结果表明,无量纲血小板大小、石墨烯面积分数和血小板层数对弹性性能有显著影响,并对它们之间的关系进行了详细的定量分析。还探讨了缺陷对弹性性能的影响,提供了对主要变形机制的见解。实验数据验证证实,开发的RVE模型和无因次化结果适用于各种多层复合材料,包括MGPFs、MXene、氧化石墨烯薄膜和珠状材料。研究结果提供了一个强大的框架,为优化MGPFs和其他层压复合材料的设计铺平了道路,使其在各种应用中具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信