Revealing the Underlying Role of Li2CO3 in Enhancing Performance of Oxyhalide-Based Solid-State Batteries

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Han Wu, Jie Qu, Xiaolong Yan, Simeng Zhang, Xingyu Wang, Jianwen Liang, Nian Zhang, Bona Dai, Junyi Yue, Tianlu Pang, Tao Mei, Yongrui Luo, Hao Lai, Xinmiao Wang, Liyu Zhou, Shuo Wang, Xueliang Sun, Xiaona Li
{"title":"Revealing the Underlying Role of Li2CO3 in Enhancing Performance of Oxyhalide-Based Solid-State Batteries","authors":"Han Wu, Jie Qu, Xiaolong Yan, Simeng Zhang, Xingyu Wang, Jianwen Liang, Nian Zhang, Bona Dai, Junyi Yue, Tianlu Pang, Tao Mei, Yongrui Luo, Hao Lai, Xinmiao Wang, Liyu Zhou, Shuo Wang, Xueliang Sun, Xiaona Li","doi":"10.1002/adma.202502067","DOIUrl":null,"url":null,"abstract":"Residual lithium compounds (RLCs) in all-solid-state batteries (ASSBs) employing Ni-rich cathode materials (LiNi<sub>x</sub>Co<sub>y</sub>Mn<sub>z</sub>O<sub>2</sub>, NCM) are traditionally viewed either as ionically and electronically insulating layers hindering electrochemical performance or as protective buffer layers enhancing cycling stability. In this study, a beneficial role of Li<sub>2</sub>CO<sub>3</sub> in ASSBs featuring an oxyhalide-based AlOCl-2LiCl (LAOC) solid-state electrolyte (SSE) is revealed. ASSBs containing NCM with residual Li<sub>2</sub>CO<sub>3</sub> demonstrate superior electrochemical performance compared to those treated with a washing pretreatment to remove Li<sub>2</sub>CO<sub>3</sub>. Solid-state nuclear magnetic resonance (ssNMR) spectroscopy shows that Li<sub>2</sub>CO<sub>3</sub> facilitates spontaneous Li<sup>+</sup> exchange at multiple sites within the LAOC SSE. This leads to faster ion mobility and shorter relaxation times at various lithium sites, indicating enhanced ion transport and improved interface dynamics. Moreover, the beneficial effects of Li<sub>2</sub>CO<sub>3</sub> are confirmed in other halide-based ASSBs. This study uncovers an unexpected role for Li<sub>2</sub>CO<sub>3</sub> in halide-based ASSBs, offering insights that may inspire further exploration of RLCs with functional properties for improving ASSBs performance.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"26 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202502067","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Residual lithium compounds (RLCs) in all-solid-state batteries (ASSBs) employing Ni-rich cathode materials (LiNixCoyMnzO2, NCM) are traditionally viewed either as ionically and electronically insulating layers hindering electrochemical performance or as protective buffer layers enhancing cycling stability. In this study, a beneficial role of Li2CO3 in ASSBs featuring an oxyhalide-based AlOCl-2LiCl (LAOC) solid-state electrolyte (SSE) is revealed. ASSBs containing NCM with residual Li2CO3 demonstrate superior electrochemical performance compared to those treated with a washing pretreatment to remove Li2CO3. Solid-state nuclear magnetic resonance (ssNMR) spectroscopy shows that Li2CO3 facilitates spontaneous Li+ exchange at multiple sites within the LAOC SSE. This leads to faster ion mobility and shorter relaxation times at various lithium sites, indicating enhanced ion transport and improved interface dynamics. Moreover, the beneficial effects of Li2CO3 are confirmed in other halide-based ASSBs. This study uncovers an unexpected role for Li2CO3 in halide-based ASSBs, offering insights that may inspire further exploration of RLCs with functional properties for improving ASSBs performance.

Abstract Image

揭示Li2CO3在提高卤化氧基固态电池性能中的潜在作用
在采用富镍正极材料(LiNixCoyMnzO2, NCM)的全固态电池(assb)中,残余锂化合物(rlc)传统上被视为阻碍电化学性能的离子和电子绝缘层,或作为增强循环稳定性的保护缓冲层。在这项研究中,揭示了Li2CO3在具有氧卤化物基AlOCl-2LiCl (LAOC)固态电解质(SSE)的assb中的有益作用。与经过水洗预处理去除Li2CO3的assb相比,含有残留Li2CO3的NCM的assb表现出更好的电化学性能。固态核磁共振(ssNMR)谱分析表明,Li2CO3促进了LAOC SSE内多个位点的自发Li+交换。这使得离子迁移速度更快,在不同锂离子位置的弛豫时间更短,表明离子传输增强,界面动力学得到改善。此外,Li2CO3在其他卤化物基assb中的有益作用也得到了证实。本研究揭示了Li2CO3在卤化物基assb中的意想不到的作用,提供了可能启发进一步探索具有功能特性的rlc以改善assb性能的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信