Joshua M. Garber, Matthew Rioux, Andrew J. Smye, Alicia M. Cruz-Uribe, Peter L. Baker, Jeffrey D. Vervoort, Michael P. Searle, Maureen D. Feineman
{"title":"Shear heating during rapid subduction initiation beneath the Samail Ophiolite","authors":"Joshua M. Garber, Matthew Rioux, Andrew J. Smye, Alicia M. Cruz-Uribe, Peter L. Baker, Jeffrey D. Vervoort, Michael P. Searle, Maureen D. Feineman","doi":"10.1038/s41561-025-01711-6","DOIUrl":null,"url":null,"abstract":"<p>Metamorphic soles beneath ophiolites are thought to record subduction initiation. However, there is ambiguity about the tectonic and thermal mechanisms operative during subduction initiation, arising partly from uncertainty in the duration of sole metamorphism. Here we use chemical mapping and diffusion speedometry of garnet crystals from the metamorphic sole of the Samail Ophiolite (Oman and United Arab Emirates) to show that high-temperature (≥750 °C) metamorphism was rapid, lasting ≤1 Myr (potentially ≤100 kyr) at peak temperature conditions. The short durations are supported by zircon U–Pb ages and new garnet–whole-rock–zircon Lu–Hf data from the same rocks, contrasting with previous inferences for ≥8 Myr metamorphic durations. These observations are nominally consistent with the spontaneous sinking of a dense lower plate. However, the rapid metamorphic timescales cannot be accounted for solely by conductive thermal equilibration with juxtaposed oceanic mantle. One potential explanation is dissipative heating driven by relative motion across the nascent plate interface. This interpretation accounts for the timescales, the spatial pattern of metamorphism and the global similarities in sole pressure–temperature conditions independent of other geodynamic variables.</p>","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"1 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41561-025-01711-6","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metamorphic soles beneath ophiolites are thought to record subduction initiation. However, there is ambiguity about the tectonic and thermal mechanisms operative during subduction initiation, arising partly from uncertainty in the duration of sole metamorphism. Here we use chemical mapping and diffusion speedometry of garnet crystals from the metamorphic sole of the Samail Ophiolite (Oman and United Arab Emirates) to show that high-temperature (≥750 °C) metamorphism was rapid, lasting ≤1 Myr (potentially ≤100 kyr) at peak temperature conditions. The short durations are supported by zircon U–Pb ages and new garnet–whole-rock–zircon Lu–Hf data from the same rocks, contrasting with previous inferences for ≥8 Myr metamorphic durations. These observations are nominally consistent with the spontaneous sinking of a dense lower plate. However, the rapid metamorphic timescales cannot be accounted for solely by conductive thermal equilibration with juxtaposed oceanic mantle. One potential explanation is dissipative heating driven by relative motion across the nascent plate interface. This interpretation accounts for the timescales, the spatial pattern of metamorphism and the global similarities in sole pressure–temperature conditions independent of other geodynamic variables.
期刊介绍:
Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields.
The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies.
Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology.
Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.