Experimental quantum-enhanced kernel-based machine learning on a photonic processor

IF 32.3 1区 物理与天体物理 Q1 OPTICS
Zhenghao Yin, Iris Agresti, Giovanni de Felice, Douglas Brown, Alexis Toumi, Ciro Pentangelo, Simone Piacentini, Andrea Crespi, Francesco Ceccarelli, Roberto Osellame, Bob Coecke, Philip Walther
{"title":"Experimental quantum-enhanced kernel-based machine learning on a photonic processor","authors":"Zhenghao Yin, Iris Agresti, Giovanni de Felice, Douglas Brown, Alexis Toumi, Ciro Pentangelo, Simone Piacentini, Andrea Crespi, Francesco Ceccarelli, Roberto Osellame, Bob Coecke, Philip Walther","doi":"10.1038/s41566-025-01682-5","DOIUrl":null,"url":null,"abstract":"<p>Recently, machine learning has had remarkable impact in scientific to everyday-life applications. However, complex tasks often require the consumption of unfeasible amounts of energy and computational power. Quantum computation may lower such requirements, although it is unclear whether enhancements are reachable with current technologies. Here we demonstrate a kernel method on a photonic integrated processor to perform a binary classification task. We show that our protocol outperforms state-of-the-art kernel methods such as gaussian and neural tangent kernels by exploiting quantum interference, and provides further improvements in accuracy by offering single-photon coherence. Our scheme does not require entangling gates and can modify the system dimension through additional modes and injected photons. This result gives access to more efficient algorithms and to formulating tasks where quantum effects improve standard methods.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"74 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-025-01682-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, machine learning has had remarkable impact in scientific to everyday-life applications. However, complex tasks often require the consumption of unfeasible amounts of energy and computational power. Quantum computation may lower such requirements, although it is unclear whether enhancements are reachable with current technologies. Here we demonstrate a kernel method on a photonic integrated processor to perform a binary classification task. We show that our protocol outperforms state-of-the-art kernel methods such as gaussian and neural tangent kernels by exploiting quantum interference, and provides further improvements in accuracy by offering single-photon coherence. Our scheme does not require entangling gates and can modify the system dimension through additional modes and injected photons. This result gives access to more efficient algorithms and to formulating tasks where quantum effects improve standard methods.

Abstract Image

光子处理器上基于核的实验量子增强机器学习
最近,机器学习在科学和日常生活应用中产生了显著的影响。然而,复杂的任务往往需要消耗不可行的能量和计算能力。量子计算可能会降低这样的要求,尽管目前尚不清楚现有技术是否可以实现增强。在这里,我们展示了一个核方法在光子集成处理器上执行二进制分类任务。我们表明,通过利用量子干涉,我们的协议优于最先进的核方法,如高斯核和神经切线核,并通过提供单光子相干性进一步提高精度。我们的方案不需要纠缠门,并且可以通过附加模式和注入光子来改变系统尺寸。这一结果为更有效的算法和制定任务提供了途径,量子效应改进了标准方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信