Biocatalytic and Redox-Regulated Nanoarchitectures for Precision Inflammation and Immune Homeostasis Modulation to Combat Rheumatoid Arthritis

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sutong Xiao, Songya Huang, Mao Wang, Ting Wang, Ming Han, Yuting Deng, Wei Geng, Liang Cheng, Xiaolin Wang, Lang Ma, Li Qiu, Chong Cheng
{"title":"Biocatalytic and Redox-Regulated Nanoarchitectures for Precision Inflammation and Immune Homeostasis Modulation to Combat Rheumatoid Arthritis","authors":"Sutong Xiao, Songya Huang, Mao Wang, Ting Wang, Ming Han, Yuting Deng, Wei Geng, Liang Cheng, Xiaolin Wang, Lang Ma, Li Qiu, Chong Cheng","doi":"10.1002/adma.202502147","DOIUrl":null,"url":null,"abstract":"The chronic inflammatory milieu of rheumatoid arthritis (RA), marked by elevated reactive oxygen species (ROS), perpetually activated pro-inflammatory macrophages (M1) and osteoclasts, and significant infiltration of pro-inflammatory cytokines contributes to abnormal articular redox imbalance, severe synovitis, and progressive joint erosion. In this study, the rational design of a biocatalytic and redox-regulated nanoarchitecture comprising Ru cluster-anchored hydroxylated Fe<sub>2</sub>O<sub>3</sub> (Ru-HFO) encapsulated within bone marrow stem cell-derived extracellular vesicles (BEVs), for precision inflammation modulation to combat RA is proposed. When combined with ultrasound (US) stimulation, this biocatalytic and inflammation-targeting nanoarchitecture (BEVs@Ru-HFO) can reprogram macrophages and osteoclasts to restore redox and immune homeostasis, thereby alleviating RA. The findings reveal that the hydroxylation strategy enhances electron density at Ru redox centers and fine-tunes the binding affinity of oxygen intermediates, thereby ensuring exceptional multi-enzymatic ROS-scavenging activities. Notably, under ultrasonic irradiation, BEVs@Ru-HFO targets inflamed joints, promotes the local accumulation of anti-inflammatory macrophages, downregulates inflammatory cytokines, and ameliorates the hypoxic microenvironment to inhibit osteoclastogenesis. This ultimately confers bone and cartilage protection and restores joint function. It is posit that this biocatalytic and redox-regulated nanoarchitecture, with its superior antioxidant and immunomodulatory capabilities, represents a promising strategy for engineering ROS-catalytic materials to treat RA and potentially many other autoimmune diseases.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"16 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202502147","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The chronic inflammatory milieu of rheumatoid arthritis (RA), marked by elevated reactive oxygen species (ROS), perpetually activated pro-inflammatory macrophages (M1) and osteoclasts, and significant infiltration of pro-inflammatory cytokines contributes to abnormal articular redox imbalance, severe synovitis, and progressive joint erosion. In this study, the rational design of a biocatalytic and redox-regulated nanoarchitecture comprising Ru cluster-anchored hydroxylated Fe2O3 (Ru-HFO) encapsulated within bone marrow stem cell-derived extracellular vesicles (BEVs), for precision inflammation modulation to combat RA is proposed. When combined with ultrasound (US) stimulation, this biocatalytic and inflammation-targeting nanoarchitecture (BEVs@Ru-HFO) can reprogram macrophages and osteoclasts to restore redox and immune homeostasis, thereby alleviating RA. The findings reveal that the hydroxylation strategy enhances electron density at Ru redox centers and fine-tunes the binding affinity of oxygen intermediates, thereby ensuring exceptional multi-enzymatic ROS-scavenging activities. Notably, under ultrasonic irradiation, BEVs@Ru-HFO targets inflamed joints, promotes the local accumulation of anti-inflammatory macrophages, downregulates inflammatory cytokines, and ameliorates the hypoxic microenvironment to inhibit osteoclastogenesis. This ultimately confers bone and cartilage protection and restores joint function. It is posit that this biocatalytic and redox-regulated nanoarchitecture, with its superior antioxidant and immunomodulatory capabilities, represents a promising strategy for engineering ROS-catalytic materials to treat RA and potentially many other autoimmune diseases.

Abstract Image

生物催化和氧化还原调控的纳米结构用于精确炎症和免疫稳态调节以对抗类风湿关节炎
类风湿关节炎(RA)的慢性炎症环境以活性氧(ROS)升高、促炎巨噬细胞(M1)和破骨细胞持续活化以及促炎细胞因子的显著浸润为特征,可导致异常的关节氧化还原失衡、严重的滑膜炎和进行性关节侵蚀。在这项研究中,提出了一种生物催化和氧化还原调节的纳米结构的合理设计,该结构包括Ru簇锚定羟基化Fe2O3 (Ru- hfo),该结构被包裹在骨髓干细胞来源的细胞外囊泡(BEVs)中,用于精确的炎症调节来对抗RA。当结合超声(US)刺激时,这种生物催化和炎症靶向纳米结构(BEVs@Ru-HFO)可以重新编程巨噬细胞和破骨细胞,以恢复氧化还原和免疫稳态,从而减轻RA。研究结果表明,羟基化策略增强了Ru氧化还原中心的电子密度,并微调了氧中间体的结合亲和力,从而确保了特殊的多酶ros清除活性。值得注意的是,在超声照射下,BEVs@Ru-HFO靶向炎症关节,促进抗炎巨噬细胞的局部积聚,下调炎症细胞因子,改善缺氧微环境,抑制破骨细胞的发生。这最终赋予骨和软骨保护和恢复关节功能。这种生物催化和氧化还原调节的纳米结构,具有优越的抗氧化和免疫调节能力,代表了一种很有前途的工程ros催化材料治疗类风湿性关节炎和潜在的许多其他自身免疫性疾病的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信