Molecularly Interlocked Interfaces Enable Record-Efficiency Stretchable Organic Photovoltaics

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Haojie Li, Shumin Zeng, Hua Zhao, Qianjin Liu, Tangyue Xue, Siqi Liu, Hongxiang Li, Lin Hu, Erjun Zhou, Melusi Khumalo, Xiaotian Hu, Yiwang Chen
{"title":"Molecularly Interlocked Interfaces Enable Record-Efficiency Stretchable Organic Photovoltaics","authors":"Haojie Li,&nbsp;Shumin Zeng,&nbsp;Hua Zhao,&nbsp;Qianjin Liu,&nbsp;Tangyue Xue,&nbsp;Siqi Liu,&nbsp;Hongxiang Li,&nbsp;Lin Hu,&nbsp;Erjun Zhou,&nbsp;Melusi Khumalo,&nbsp;Xiaotian Hu,&nbsp;Yiwang Chen","doi":"10.1002/adma.202507761","DOIUrl":null,"url":null,"abstract":"<p>The development of stretchable organic solar cells (s-OSCs) demands concurrent breakthroughs in mechanical compliance and electronic properties, and the challenge is rooted in the intrinsic mechanical mismatch between organic semiconductors and metal electrodes. Here, this study proposes dual-phase interface engineering strategies to reconcile these conflicting requirements through molecularly interlocked conductive elastomers. Dynamic stress dissipation through dynamic bond plasticity is achieved by embedding a 3D interpenetrating conducting elastomer network within the electron transport layer (ETL). The strategy creates gradient modulus interfaces through Ag coordination-enabled nanocomposite bonding, suppressing crack propagation velocities and reduces the interfacial mechanical mismatch phenomenon. Eventually, the PCE of 19.58% is achieved on the small-area flexible devices, which is one of the highest PCEs for flexible organic solar cells (f-OSCs) to date. Notably, the stretchable devices retain over the PCE of 10% under 100% tensile strain, surpassing previous stretchable photovoltaic devices. To further validate the potential of this strategy for large-area module applications, 25 cm<sup>2</sup>-based flexible and stretchable modules are prepared with PCEs of 16.74% and 14.48%, respectively. The work redefines material design rules for deformable electronics by establishing a generic mechanically adaptive framework that synchronizes interfacial dynamics across molecular to macroscopic scales.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 33","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202507761","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of stretchable organic solar cells (s-OSCs) demands concurrent breakthroughs in mechanical compliance and electronic properties, and the challenge is rooted in the intrinsic mechanical mismatch between organic semiconductors and metal electrodes. Here, this study proposes dual-phase interface engineering strategies to reconcile these conflicting requirements through molecularly interlocked conductive elastomers. Dynamic stress dissipation through dynamic bond plasticity is achieved by embedding a 3D interpenetrating conducting elastomer network within the electron transport layer (ETL). The strategy creates gradient modulus interfaces through Ag coordination-enabled nanocomposite bonding, suppressing crack propagation velocities and reduces the interfacial mechanical mismatch phenomenon. Eventually, the PCE of 19.58% is achieved on the small-area flexible devices, which is one of the highest PCEs for flexible organic solar cells (f-OSCs) to date. Notably, the stretchable devices retain over the PCE of 10% under 100% tensile strain, surpassing previous stretchable photovoltaic devices. To further validate the potential of this strategy for large-area module applications, 25 cm2-based flexible and stretchable modules are prepared with PCEs of 16.74% and 14.48%, respectively. The work redefines material design rules for deformable electronics by establishing a generic mechanically adaptive framework that synchronizes interfacial dynamics across molecular to macroscopic scales.

Abstract Image

Abstract Image

分子互锁界面实现创纪录效率的可拉伸有机光伏
可拉伸有机太阳能电池(s-OSCs)的发展需要在机械顺应性和电子性能方面同时取得突破,而挑战的根源在于有机半导体和金属电极之间固有的机械不匹配。在这里,本研究提出了双相界面工程策略,通过分子互锁导电弹性体来调和这些冲突的要求。通过动态键塑性的动态应力消散是通过在电子传输层(ETL)内嵌入三维互穿导电弹性体网络来实现的。该策略通过银配位纳米复合材料键合产生梯度模量界面,抑制裂纹扩展速度,减少界面力学失配现象。最终,在小面积柔性器件上实现了19.58%的PCE,这是迄今为止柔性有机太阳能电池(f-OSCs)的最高PCE之一。值得注意的是,在100%拉伸应变下,可拉伸器件的PCE保持在10%以上,超过了以前的可拉伸光伏器件。为了进一步验证该策略在大面积模块应用中的潜力,制备了基于25 cm2的柔性和可拉伸模块,pce分别为16.74%和14.48%。这项工作通过建立一个通用的机械自适应框架,将分子间的界面动力学同步到宏观尺度,重新定义了可变形电子器件的材料设计规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信