Zhenyu Kang, Mengling Yang, Yue Liu, Yang Gui, Yalan Dong, Haifeng Zhou, Zili Zhang, Mingyue Li, Heng Fan, Zheng Li, Junjie Lu, Junyi Li, Rui Zhu, Chengyu Yin, Boyi Liu, Feng Jiang, Kun Huang, Alexey Sarapultsev, Fangfei Li, Ge Zhang, Ling Zhao, Yanyi Wang, Yunjia Ning, Xiang Cheng, Sarajo K. Mohanta, Changjun Yin, Shanshan Luo, Andreas J. R. Habenicht, Desheng Hu
{"title":"Myocardial mitochondrial antiviral signaling protein promotes heart Ischemia-reperfusion injury via RIG-I signaling in mice","authors":"Zhenyu Kang, Mengling Yang, Yue Liu, Yang Gui, Yalan Dong, Haifeng Zhou, Zili Zhang, Mingyue Li, Heng Fan, Zheng Li, Junjie Lu, Junyi Li, Rui Zhu, Chengyu Yin, Boyi Liu, Feng Jiang, Kun Huang, Alexey Sarapultsev, Fangfei Li, Ge Zhang, Ling Zhao, Yanyi Wang, Yunjia Ning, Xiang Cheng, Sarajo K. Mohanta, Changjun Yin, Shanshan Luo, Andreas J. R. Habenicht, Desheng Hu","doi":"10.1038/s41467-025-60123-7","DOIUrl":null,"url":null,"abstract":"<p>Myocardial ischemia-reperfusion injury (MIRI) is a life-threatening complication of myocardial infarcts, with inner mitochondrial membrane protein dysfunction involved in MIRI-induced heart injury. The role of outer mitochondrial membrane protein mitochondrial antiviral signaling protein (MAVS) is unknown. Here, we show that MAVS expression increases in infarcted myocardium of male wild-type mice. Global MAVS-knock-out or myocardial-specific MAVS knockdown protects male mice from acute and chronic MIRI. MIRI induces double-stranded RNA in affected myocardium, activating intracellular retinoic acid-inducible gene I (RIG-I) signaling, which leads to MAVS aggregation and subsequent non-canonical downstream signaling. MAVS aggregates recruit tumor necrosis factor-associated factor family 6 (TRAF6) and transforming growth factor-β-activated kinase 1 (TAK1), the activating mitogen-activated protein kinase (MAPK) pathway and apoptosis. MAVS-knock-out reduces c-jun-NH2 terminal kinase (JNK) phosphorylation and apoptosis. JNK inhibition protects against MIRI in wild-type male mice, whereas JNK agonist impairs protection in MAVS-knock-out male mice. MIRI activates RIG-I/MAVS pathway and subsequently triggers the TAK1/TRAF6 complex, leading to the activation of the MAPK/JNK signaling cascade. This sequential activation cascade may serve as a potential therapeutic target for MIRI.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"160 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60123-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a life-threatening complication of myocardial infarcts, with inner mitochondrial membrane protein dysfunction involved in MIRI-induced heart injury. The role of outer mitochondrial membrane protein mitochondrial antiviral signaling protein (MAVS) is unknown. Here, we show that MAVS expression increases in infarcted myocardium of male wild-type mice. Global MAVS-knock-out or myocardial-specific MAVS knockdown protects male mice from acute and chronic MIRI. MIRI induces double-stranded RNA in affected myocardium, activating intracellular retinoic acid-inducible gene I (RIG-I) signaling, which leads to MAVS aggregation and subsequent non-canonical downstream signaling. MAVS aggregates recruit tumor necrosis factor-associated factor family 6 (TRAF6) and transforming growth factor-β-activated kinase 1 (TAK1), the activating mitogen-activated protein kinase (MAPK) pathway and apoptosis. MAVS-knock-out reduces c-jun-NH2 terminal kinase (JNK) phosphorylation and apoptosis. JNK inhibition protects against MIRI in wild-type male mice, whereas JNK agonist impairs protection in MAVS-knock-out male mice. MIRI activates RIG-I/MAVS pathway and subsequently triggers the TAK1/TRAF6 complex, leading to the activation of the MAPK/JNK signaling cascade. This sequential activation cascade may serve as a potential therapeutic target for MIRI.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.