Tuning transport properties of Cr2AlC conducting ceramic through point defects

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
J. Salgado Cabaco, F. Long, U. Kentsch, K. Potzger, S. Zhou, C. Leyens, J. Lindner, J. Faßbender, R. Boucher, R. Bali
{"title":"Tuning transport properties of Cr2AlC conducting ceramic through point defects","authors":"J. Salgado Cabaco, F. Long, U. Kentsch, K. Potzger, S. Zhou, C. Leyens, J. Lindner, J. Faßbender, R. Boucher, R. Bali","doi":"10.1016/j.jallcom.2025.180856","DOIUrl":null,"url":null,"abstract":"Nano-lamellar alloys known as MAX phases integrate ceramic structural properties with metallic conduction. Here we induce point defects in the prototype Cr<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\" /&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.509ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -399.4 453.9 649.8\" width=\"1.054ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span>AlC system thereby locally perturbing the lamellar structure and track the changes to the magnetic and electron transport behaviour. Systematic defect generation is achieved by the irradiation of energetic Co<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msup is=\"true\"&gt;&lt;mrow is=\"true\" /&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.12ex;\" viewbox=\"0 -846.5 650.5 898.2\" width=\"1.511ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2B\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mo is=\"true\">+</mo></mrow></msup></math></span></span><script type=\"math/mml\"><math><msup is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mo is=\"true\">+</mo></mrow></msup></math></script></span>, Cr<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msup is=\"true\"&gt;&lt;mrow is=\"true\" /&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.12ex;\" viewbox=\"0 -846.5 650.5 898.2\" width=\"1.511ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2B\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mo is=\"true\">+</mo></mrow></msup></math></span></span><script type=\"math/mml\"><math><msup is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mo is=\"true\">+</mo></mrow></msup></math></script></span> as well as Ar<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msup is=\"true\"&gt;&lt;mrow is=\"true\" /&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.12ex;\" viewbox=\"0 -846.5 650.5 898.2\" width=\"1.511ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2B\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mo is=\"true\">+</mo></mrow></msup></math></span></span><script type=\"math/mml\"><math><msup is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mo is=\"true\">+</mo></mrow></msup></math></script></span> ions at fluences ranging from 10<sup>12</sup> – 10<sup>15</sup> ions<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi is=\"true\"&gt;&amp;#x22C5;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.048ex\" role=\"img\" style=\"vertical-align: 0.439ex; margin-bottom: -0.559ex;\" viewbox=\"0 -399.4 278.5 451.1\" width=\"0.647ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-22C5\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">⋅</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">⋅</mi></math></script></span>cm<sup>−2</sup>. The magnetic behaviour is shown to consist of contributions from <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;J&lt;/mi&gt;&lt;mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\"&gt;=&lt;/mo&gt;&lt;mfrac is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.24ex\" role=\"img\" style=\"vertical-align: -1.043ex;\" viewbox=\"0 -945.9 2681.5 1395\" width=\"6.228ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4A\"></use></g><g is=\"true\" transform=\"translate(911,0)\"><use xlink:href=\"#MJMAIN-3D\"></use></g><g is=\"true\" transform=\"translate(1689,0)\"><g transform=\"translate(397,0)\"><rect height=\"60\" stroke=\"none\" width=\"473\" x=\"0\" y=\"220\"></rect><g is=\"true\" transform=\"translate(60,403)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use></g></g><g is=\"true\" transform=\"translate(60,-375)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">J</mi><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mo><mfrac is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></mfrac></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">J</mi><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">=</mo><mfrac is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></mfrac></mrow></math></script></span> quantum spins as well as <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;J&lt;/mi&gt;&lt;mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\"&gt;=&lt;/mo&gt;&lt;mi is=\"true\"&gt;&amp;#x221E;&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.971ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -747.2 2968.1 848.5\" width=\"6.894ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4A\"></use></g><g is=\"true\" transform=\"translate(911,0)\"><use xlink:href=\"#MJMAIN-3D\"></use></g><g is=\"true\" transform=\"translate(1967,0)\"><use xlink:href=\"#MJMAIN-221E\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">J</mi><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mo><mi is=\"true\">∞</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">J</mi><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">=</mo><mi is=\"true\">∞</mi></mrow></math></script></span> classical cluster-like behavior containing <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x223C;&lt;/mo&gt;&lt;mn is=\"true\"&gt;80&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.971ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -747.2 2057.3 848.5\" width=\"4.778ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-223C\"></use></g><g is=\"true\" transform=\"translate(1056,0)\"><use xlink:href=\"#MJMAIN-38\"></use><use x=\"500\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">∼</mo><mn is=\"true\">80</mn></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">∼</mo><mn is=\"true\">80</mn></mrow></math></script></span> spins. Both these magnetic defect types contribute to the transport properties, where the <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;J&lt;/mi&gt;&lt;mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\"&gt;=&lt;/mo&gt;&lt;mfrac is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.24ex\" role=\"img\" style=\"vertical-align: -1.043ex;\" viewbox=\"0 -945.9 2681.5 1395\" width=\"6.228ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4A\"></use></g><g is=\"true\" transform=\"translate(911,0)\"><use xlink:href=\"#MJMAIN-3D\"></use></g><g is=\"true\" transform=\"translate(1689,0)\"><g transform=\"translate(397,0)\"><rect height=\"60\" stroke=\"none\" width=\"473\" x=\"0\" y=\"220\"></rect><g is=\"true\" transform=\"translate(60,403)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use></g></g><g is=\"true\" transform=\"translate(60,-375)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">J</mi><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mo><mfrac is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></mfrac></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">J</mi><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">=</mo><mfrac is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></mfrac></mrow></math></script></span> spins give rise to the Kondo effect with a characteristic temperature, <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\"&gt;&amp;#x223C;&lt;/mo&gt;&lt;mn is=\"true\"&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -747.2 3148 997.6\" width=\"7.312ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-54\"></use></g></g><g is=\"true\" transform=\"translate(584,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-4B\"></use></g></g></g><g is=\"true\" transform=\"translate(1591,0)\"><use xlink:href=\"#MJMAIN-223C\"></use></g><g is=\"true\" transform=\"translate(2647,0)\"><use xlink:href=\"#MJMAIN-35\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">T</mi></mrow><mrow is=\"true\"><mi is=\"true\">K</mi></mrow></msub><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">∼</mo><mn is=\"true\">5</mn></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">T</mi></mrow><mrow is=\"true\"><mi is=\"true\">K</mi></mrow></msub><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">∼</mo><mn is=\"true\">5</mn></mrow></math></script></span> K. Kondo defects are present in the as-prepared alloy as well as post-irradiation. A low-field magnetoresistive switching is observed post-irradiation, showing a temperature dependence that is consistent with polaron hopping within defect clusters. The enhanced magnetization as well as spin-scattering occur regardless of the irradiated species, proving that the source of these effects are the displaced Cr atoms of the precursor alloy. These results demonstrate the electronic tunability of MAX phases making them promising materials for spin-transport devices.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"7 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.180856","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nano-lamellar alloys known as MAX phases integrate ceramic structural properties with metallic conduction. Here we induce point defects in the prototype Cr2AlC system thereby locally perturbing the lamellar structure and track the changes to the magnetic and electron transport behaviour. Systematic defect generation is achieved by the irradiation of energetic Co+, Cr+ as well as Ar+ ions at fluences ranging from 1012 – 1015 ionscm−2. The magnetic behaviour is shown to consist of contributions from J=12 quantum spins as well as J= classical cluster-like behavior containing 80 spins. Both these magnetic defect types contribute to the transport properties, where the J=12 spins give rise to the Kondo effect with a characteristic temperature, TK5 K. Kondo defects are present in the as-prepared alloy as well as post-irradiation. A low-field magnetoresistive switching is observed post-irradiation, showing a temperature dependence that is consistent with polaron hopping within defect clusters. The enhanced magnetization as well as spin-scattering occur regardless of the irradiated species, proving that the source of these effects are the displaced Cr atoms of the precursor alloy. These results demonstrate the electronic tunability of MAX phases making them promising materials for spin-transport devices.

Abstract Image

通过点缺陷调整Cr2AlC导电陶瓷的输运特性
被称为MAX相的纳米片层合金将陶瓷结构性能与金属导电性结合在一起。我们在Cr22AlC原型体系中引入点缺陷,从而局部扰动层状结构,并跟踪其磁性和电子输运行为的变化。通过高能Co++、Cr++和Ar++离子在1012 ~ 1015离子⋅⋅cm−2范围内的辐照,实现了系统缺陷的生成。磁行为显示由J=12J=12量子自旋和J=∞J=∞经典簇状行为组成,包含~ 80 ~ 80个自旋。这两种磁缺陷类型都对输运性质有贡献,其中J=12J=12自旋产生近藤效应,其特征温度为TK ~ 5TK ~ 5k。近藤缺陷存在于制备的合金和辐照后的合金中。辐照后观察到低场磁阻开关,显示出与缺陷团簇内极化子跳变一致的温度依赖性。磁化强度的增强和自旋散射的发生与辐照物质无关,证明了这些效应的来源是前驱体合金中移位的Cr原子。这些结果证明了MAX相的电子可调性,使其成为有前途的自旋输运器件材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信