J. Salgado Cabaco, F. Long, U. Kentsch, K. Potzger, S. Zhou, C. Leyens, J. Lindner, J. Faßbender, R. Boucher, R. Bali
{"title":"Tuning transport properties of Cr2AlC conducting ceramic through point defects","authors":"J. Salgado Cabaco, F. Long, U. Kentsch, K. Potzger, S. Zhou, C. Leyens, J. Lindner, J. Faßbender, R. Boucher, R. Bali","doi":"10.1016/j.jallcom.2025.180856","DOIUrl":null,"url":null,"abstract":"Nano-lamellar alloys known as MAX phases integrate ceramic structural properties with metallic conduction. Here we induce point defects in the prototype Cr<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\" /><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.509ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -399.4 453.9 649.8\" width=\"1.054ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub></math></script></span>AlC system thereby locally perturbing the lamellar structure and track the changes to the magnetic and electron transport behaviour. Systematic defect generation is achieved by the irradiation of energetic Co<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mrow is=\"true\" /><mrow is=\"true\"><mo is=\"true\">+</mo></mrow></msup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.12ex;\" viewbox=\"0 -846.5 650.5 898.2\" width=\"1.511ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2B\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mo is=\"true\">+</mo></mrow></msup></math></span></span><script type=\"math/mml\"><math><msup is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mo is=\"true\">+</mo></mrow></msup></math></script></span>, Cr<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mrow is=\"true\" /><mrow is=\"true\"><mo is=\"true\">+</mo></mrow></msup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.12ex;\" viewbox=\"0 -846.5 650.5 898.2\" width=\"1.511ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2B\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mo is=\"true\">+</mo></mrow></msup></math></span></span><script type=\"math/mml\"><math><msup is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mo is=\"true\">+</mo></mrow></msup></math></script></span> as well as Ar<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mrow is=\"true\" /><mrow is=\"true\"><mo is=\"true\">+</mo></mrow></msup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.12ex;\" viewbox=\"0 -846.5 650.5 898.2\" width=\"1.511ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"></g><g is=\"true\" transform=\"translate(0,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2B\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mo is=\"true\">+</mo></mrow></msup></math></span></span><script type=\"math/mml\"><math><msup is=\"true\"><mrow is=\"true\"></mrow><mrow is=\"true\"><mo is=\"true\">+</mo></mrow></msup></math></script></span> ions at fluences ranging from 10<sup>12</sup> – 10<sup>15</sup> ions<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">&#x22C5;</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.048ex\" role=\"img\" style=\"vertical-align: 0.439ex; margin-bottom: -0.559ex;\" viewbox=\"0 -399.4 278.5 451.1\" width=\"0.647ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-22C5\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">⋅</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">⋅</mi></math></script></span>cm<sup>−2</sup>. The magnetic behaviour is shown to consist of contributions from <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">J</mi><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">=</mo><mfrac is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></mfrac></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.24ex\" role=\"img\" style=\"vertical-align: -1.043ex;\" viewbox=\"0 -945.9 2681.5 1395\" width=\"6.228ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4A\"></use></g><g is=\"true\" transform=\"translate(911,0)\"><use xlink:href=\"#MJMAIN-3D\"></use></g><g is=\"true\" transform=\"translate(1689,0)\"><g transform=\"translate(397,0)\"><rect height=\"60\" stroke=\"none\" width=\"473\" x=\"0\" y=\"220\"></rect><g is=\"true\" transform=\"translate(60,403)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use></g></g><g is=\"true\" transform=\"translate(60,-375)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">J</mi><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mo><mfrac is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></mfrac></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">J</mi><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">=</mo><mfrac is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></mfrac></mrow></math></script></span> quantum spins as well as <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">J</mi><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">=</mo><mi is=\"true\">&#x221E;</mi></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.971ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -747.2 2968.1 848.5\" width=\"6.894ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4A\"></use></g><g is=\"true\" transform=\"translate(911,0)\"><use xlink:href=\"#MJMAIN-3D\"></use></g><g is=\"true\" transform=\"translate(1967,0)\"><use xlink:href=\"#MJMAIN-221E\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">J</mi><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mo><mi is=\"true\">∞</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">J</mi><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">=</mo><mi is=\"true\">∞</mi></mrow></math></script></span> classical cluster-like behavior containing <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">&#x223C;</mo><mn is=\"true\">80</mn></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.971ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -747.2 2057.3 848.5\" width=\"4.778ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-223C\"></use></g><g is=\"true\" transform=\"translate(1056,0)\"><use xlink:href=\"#MJMAIN-38\"></use><use x=\"500\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">∼</mo><mn is=\"true\">80</mn></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">∼</mo><mn is=\"true\">80</mn></mrow></math></script></span> spins. Both these magnetic defect types contribute to the transport properties, where the <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">J</mi><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">=</mo><mfrac is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></mfrac></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.24ex\" role=\"img\" style=\"vertical-align: -1.043ex;\" viewbox=\"0 -945.9 2681.5 1395\" width=\"6.228ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4A\"></use></g><g is=\"true\" transform=\"translate(911,0)\"><use xlink:href=\"#MJMAIN-3D\"></use></g><g is=\"true\" transform=\"translate(1689,0)\"><g transform=\"translate(397,0)\"><rect height=\"60\" stroke=\"none\" width=\"473\" x=\"0\" y=\"220\"></rect><g is=\"true\" transform=\"translate(60,403)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use></g></g><g is=\"true\" transform=\"translate(60,-375)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">J</mi><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mo><mfrac is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></mfrac></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">J</mi><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">=</mo><mfrac is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></mfrac></mrow></math></script></span> spins give rise to the Kondo effect with a characteristic temperature, <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">T</mi></mrow><mrow is=\"true\"><mi is=\"true\">K</mi></mrow></msub><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">&#x223C;</mo><mn is=\"true\">5</mn></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -747.2 3148 997.6\" width=\"7.312ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-54\"></use></g></g><g is=\"true\" transform=\"translate(584,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-4B\"></use></g></g></g><g is=\"true\" transform=\"translate(1591,0)\"><use xlink:href=\"#MJMAIN-223C\"></use></g><g is=\"true\" transform=\"translate(2647,0)\"><use xlink:href=\"#MJMAIN-35\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">T</mi></mrow><mrow is=\"true\"><mi is=\"true\">K</mi></mrow></msub><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">∼</mo><mn is=\"true\">5</mn></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">T</mi></mrow><mrow is=\"true\"><mi is=\"true\">K</mi></mrow></msub><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">∼</mo><mn is=\"true\">5</mn></mrow></math></script></span> K. Kondo defects are present in the as-prepared alloy as well as post-irradiation. A low-field magnetoresistive switching is observed post-irradiation, showing a temperature dependence that is consistent with polaron hopping within defect clusters. The enhanced magnetization as well as spin-scattering occur regardless of the irradiated species, proving that the source of these effects are the displaced Cr atoms of the precursor alloy. These results demonstrate the electronic tunability of MAX phases making them promising materials for spin-transport devices.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"7 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.180856","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nano-lamellar alloys known as MAX phases integrate ceramic structural properties with metallic conduction. Here we induce point defects in the prototype CrAlC system thereby locally perturbing the lamellar structure and track the changes to the magnetic and electron transport behaviour. Systematic defect generation is achieved by the irradiation of energetic Co, Cr as well as Ar ions at fluences ranging from 1012 – 1015 ionscm−2. The magnetic behaviour is shown to consist of contributions from quantum spins as well as classical cluster-like behavior containing spins. Both these magnetic defect types contribute to the transport properties, where the spins give rise to the Kondo effect with a characteristic temperature, K. Kondo defects are present in the as-prepared alloy as well as post-irradiation. A low-field magnetoresistive switching is observed post-irradiation, showing a temperature dependence that is consistent with polaron hopping within defect clusters. The enhanced magnetization as well as spin-scattering occur regardless of the irradiated species, proving that the source of these effects are the displaced Cr atoms of the precursor alloy. These results demonstrate the electronic tunability of MAX phases making them promising materials for spin-transport devices.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.