Emily Rozich, Ulas Ozkurede, Shanmugasundaram Pakkiriswami, Ryan Gemilere, Samira M Azarin, Julia C Liu
{"title":"Mitochondrial oxidative stress, calcium and dynamics in cardiac ischaemia-reperfusion injury.","authors":"Emily Rozich, Ulas Ozkurede, Shanmugasundaram Pakkiriswami, Ryan Gemilere, Samira M Azarin, Julia C Liu","doi":"10.1113/JP287770","DOIUrl":null,"url":null,"abstract":"<p><p>Ischaemia-reperfusion injury (IRI) is a major cause of cardiomyocyte damage and death from myocardial infarction. Oxidative stress, dysregulated calcium (Ca<sup>2+</sup>) handling and disrupted mitochondrial dynamics are all key factors in IRI and can play a role in cell death. Mitochondria are a primary source of oxidative stress, which is generated by electron leak from the respiratory chain complexes and the oxidation of accumulated succinate upon reperfusion. The mitochondrial permeability transition pore (mPTP), a high conductance channel that forms following reperfusion of ischaemic mitochondria, has been implicated in reperfusion-induced cell death. Although factors including mitochondrial Ca<sup>2+</sup> overload and oxidative stress that regulate mPTP opening have been well characterized, the composition of the mPTP is still actively investigated. Clinically, mPTP opening and IRI complicate treatment of myocardial infarction. Therefore, many possible therapeutics to reduce the damaging effects of reperfusion are under investigation. Antioxidants, pharmaceutical approaches, postconditioning and synthetic polymers have all been investigated for use in IRI. Still, many of these therapeutics of interest have shown mixed evidence underlying their use in preclinical and clinical research. In this review we discuss our current understanding of the contributions of mitochondrial oxidative stress, mitochondrial Ca<sup>2+</sup> and mitochondrial dynamics to cardiomyocyte damage and death in IRI, and where further clarification of these mechanisms is needed to identify potential therapeutic targets.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP287770","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ischaemia-reperfusion injury (IRI) is a major cause of cardiomyocyte damage and death from myocardial infarction. Oxidative stress, dysregulated calcium (Ca2+) handling and disrupted mitochondrial dynamics are all key factors in IRI and can play a role in cell death. Mitochondria are a primary source of oxidative stress, which is generated by electron leak from the respiratory chain complexes and the oxidation of accumulated succinate upon reperfusion. The mitochondrial permeability transition pore (mPTP), a high conductance channel that forms following reperfusion of ischaemic mitochondria, has been implicated in reperfusion-induced cell death. Although factors including mitochondrial Ca2+ overload and oxidative stress that regulate mPTP opening have been well characterized, the composition of the mPTP is still actively investigated. Clinically, mPTP opening and IRI complicate treatment of myocardial infarction. Therefore, many possible therapeutics to reduce the damaging effects of reperfusion are under investigation. Antioxidants, pharmaceutical approaches, postconditioning and synthetic polymers have all been investigated for use in IRI. Still, many of these therapeutics of interest have shown mixed evidence underlying their use in preclinical and clinical research. In this review we discuss our current understanding of the contributions of mitochondrial oxidative stress, mitochondrial Ca2+ and mitochondrial dynamics to cardiomyocyte damage and death in IRI, and where further clarification of these mechanisms is needed to identify potential therapeutic targets.
期刊介绍:
The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew.
The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.