Yiling Huang, Fan Peng, Xuemei Song, Xingyu Jin, Yuqing Jiang, Wei Zheng, Caifen Jiang, Zhaoqi Wu, Yi Zeng
{"title":"Optimisation of EBSD indexing through pattern centre calibration and grain boundary refinement","authors":"Yiling Huang, Fan Peng, Xuemei Song, Xingyu Jin, Yuqing Jiang, Wei Zheng, Caifen Jiang, Zhaoqi Wu, Yi Zeng","doi":"10.1111/jmi.13434","DOIUrl":null,"url":null,"abstract":"<p>To enhance the indexing rate of conventional electron backscatter diffraction (EBSD), this study employed EBSD to collect and analyse the mapping data of cubic phase materials. Kikuchi bands were identified using Hough transform, and the pattern centre was optimised through a genetic algorithm. Four objective functions were designed to investigate the influence of varying population sizes on the convergence of the algorithm. The results revealed that the calculation stabilised when the population size reached 400, with the HMAE (H-mean angular error) objective function exhibiting superior performance in screening by integrating the number of matched Kikuchi bands and mean angular error (MAE). Furthermore, to address indexing errors resulting from overlapping Kikuchi patterns at grain boundaries, an indexing optimisation method based on pattern similarity matching was proposed, significantly improving the indexing rate of EBSD mapping data. Finally, neighbourhood search strategy was implemented to further refine the indexing process, ensuring high indexing accuracy while substantially reducing computational time. This study offers novel methodologies and insights for improving the efficiency and precision of EBSD mapping data acquisition and analysis.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"300 1","pages":"36-50"},"PeriodicalIF":1.9000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13434","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
To enhance the indexing rate of conventional electron backscatter diffraction (EBSD), this study employed EBSD to collect and analyse the mapping data of cubic phase materials. Kikuchi bands were identified using Hough transform, and the pattern centre was optimised through a genetic algorithm. Four objective functions were designed to investigate the influence of varying population sizes on the convergence of the algorithm. The results revealed that the calculation stabilised when the population size reached 400, with the HMAE (H-mean angular error) objective function exhibiting superior performance in screening by integrating the number of matched Kikuchi bands and mean angular error (MAE). Furthermore, to address indexing errors resulting from overlapping Kikuchi patterns at grain boundaries, an indexing optimisation method based on pattern similarity matching was proposed, significantly improving the indexing rate of EBSD mapping data. Finally, neighbourhood search strategy was implemented to further refine the indexing process, ensuring high indexing accuracy while substantially reducing computational time. This study offers novel methodologies and insights for improving the efficiency and precision of EBSD mapping data acquisition and analysis.
期刊介绍:
The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit.
The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens.
Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.