Françoise Levavasseur, Samia Oussous, Alessandro Framarini, Ismael Boussaid, Panhong Gou, Zubaidan Tuerdi, Iman Litchy Boueya, Helyette Hoffner, Marta De Almeida, Morgane Le Gall, Haley Tucker, Stéphane Giraudier, Didier Bouscary, Michaela Fontenay, Diana Passaro, Isabelle Dusanter-Fourt, Evelyne Lauret
{"title":"FOXP1 contributes to murine hematopoietic stem cell functionality.","authors":"Françoise Levavasseur, Samia Oussous, Alessandro Framarini, Ismael Boussaid, Panhong Gou, Zubaidan Tuerdi, Iman Litchy Boueya, Helyette Hoffner, Marta De Almeida, Morgane Le Gall, Haley Tucker, Stéphane Giraudier, Didier Bouscary, Michaela Fontenay, Diana Passaro, Isabelle Dusanter-Fourt, Evelyne Lauret","doi":"10.1016/j.exphem.2025.104815","DOIUrl":null,"url":null,"abstract":"<p><p>Transcription factor forkhead box P1 (FOXP1) is a key regulator of immune cell functions. We have shown that FOXP1 contributes to the expansion of human hematopoietic stem/progenitor (HSPC) and acute myeloid leukaemia cells. Here, we investigated the role of FOXP1 in early adult mouse hematopoiesis in vivo. We showed that loss of hematopoietic-specific FOXP1 expression leads to attrition of the HSC and multipotent progenitor (MPP)-1 compartment in parallel with enhancement of myeloid-biased MPP3 in adult bone marrow and fetal liver. Transplantation experiments confirmed that FOXP1-deficient bone marrow had an intrinsic reduced HSC compartment. FOXP1-deficient MPP compartments also showed enhanced proliferation with G0 phase reduction. Transcriptome analyses revealed that FOXP1-deficient HSC exhibited reduced stemness and enhanced expression of cell proliferation pathways. Thus, our current results reveal the important contribution of FOXP1 in early murine hematopoiesis through HSC maintenance, limited expansion of all MPP compartments and restriction of early myeloid commitment in vivo.</p>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":" ","pages":"104815"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exphem.2025.104815","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transcription factor forkhead box P1 (FOXP1) is a key regulator of immune cell functions. We have shown that FOXP1 contributes to the expansion of human hematopoietic stem/progenitor (HSPC) and acute myeloid leukaemia cells. Here, we investigated the role of FOXP1 in early adult mouse hematopoiesis in vivo. We showed that loss of hematopoietic-specific FOXP1 expression leads to attrition of the HSC and multipotent progenitor (MPP)-1 compartment in parallel with enhancement of myeloid-biased MPP3 in adult bone marrow and fetal liver. Transplantation experiments confirmed that FOXP1-deficient bone marrow had an intrinsic reduced HSC compartment. FOXP1-deficient MPP compartments also showed enhanced proliferation with G0 phase reduction. Transcriptome analyses revealed that FOXP1-deficient HSC exhibited reduced stemness and enhanced expression of cell proliferation pathways. Thus, our current results reveal the important contribution of FOXP1 in early murine hematopoiesis through HSC maintenance, limited expansion of all MPP compartments and restriction of early myeloid commitment in vivo.
期刊介绍:
Experimental Hematology publishes new findings, methodologies, reviews and perspectives in all areas of hematology and immune cell formation on a monthly basis that may include Special Issues on particular topics of current interest. The overall goal is to report new insights into how normal blood cells are produced, how their production is normally regulated, mechanisms that contribute to hematological diseases and new approaches to their treatment. Specific topics may include relevant developmental and aging processes, stem cell biology, analyses of intrinsic and extrinsic regulatory mechanisms, in vitro behavior of primary cells, clonal tracking, molecular and omics analyses, metabolism, epigenetics, bioengineering approaches, studies in model organisms, novel clinical observations, transplantation biology and new therapeutic avenues.