Leonid Goubergrits, Pavlo Yevtushenko, Adriano Schlief, Jan Romberg, Titus Kuehne, Andreas Arndt, Jan Bruening
{"title":"Translation of Animal Study to Human: In Silico Based Development of Implantable Pulmonary Artery Pressure Sensor","authors":"Leonid Goubergrits, Pavlo Yevtushenko, Adriano Schlief, Jan Romberg, Titus Kuehne, Andreas Arndt, Jan Bruening","doi":"10.1002/cnm.70050","DOIUrl":null,"url":null,"abstract":"<p>Implantable pulmonary artery pressure sensors (PAPS) might impose a flow-induced risk of thrombus formation in the pulmonary artery (PA). To assess this risk, an in silico study-enhanced animal study with 20 sensors implanted in 10 pigs had previously been conducted. In the in silico study, PAPS were virtually implanted mimicking real implantations, based upon data acquired by CT. This animal in silico study investigated changes in hemodynamics caused by PAPS using image-based computational fluid dynamics (CFD). However, porcine and human PA differ significantly in geometry and hemodynamics. To investigate the transferability of animal in silico study findings toward human conditions, we propose a parallel in silico human study. Based on a similarity analysis (L1 norm for 8 geometric features) human PA geometries with the least difference to 10 porcine PA were selected. PAPS were virtually implanted in human PA as close as possible, mimicking the implantation configuration of the animal study. Finally, a numerical flow analysis of the hemodynamic changes due to PAPS implantation was done. Comparing human and porcine PA, we found significantly larger left and right PA diameters in humans, whereas no differences were found for main PA diameters and bifurcation angle. Comparing hemodynamic boundary conditions, we found a significantly smaller heart rate and a significantly higher peak systolic main PA flow rate in humans, whereas no significant differences for cardiac output were found. The human in silico PAPS study found no relevant changes in hemodynamics increasing the risk of thrombus formation after sensor implantation. This is also valid for PAPS that were non-optimally implanted. Thus, despite differences between species, findings of the in silico animal study were confirmed by the human in silico study.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"41 6","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.70050","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70050","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Implantable pulmonary artery pressure sensors (PAPS) might impose a flow-induced risk of thrombus formation in the pulmonary artery (PA). To assess this risk, an in silico study-enhanced animal study with 20 sensors implanted in 10 pigs had previously been conducted. In the in silico study, PAPS were virtually implanted mimicking real implantations, based upon data acquired by CT. This animal in silico study investigated changes in hemodynamics caused by PAPS using image-based computational fluid dynamics (CFD). However, porcine and human PA differ significantly in geometry and hemodynamics. To investigate the transferability of animal in silico study findings toward human conditions, we propose a parallel in silico human study. Based on a similarity analysis (L1 norm for 8 geometric features) human PA geometries with the least difference to 10 porcine PA were selected. PAPS were virtually implanted in human PA as close as possible, mimicking the implantation configuration of the animal study. Finally, a numerical flow analysis of the hemodynamic changes due to PAPS implantation was done. Comparing human and porcine PA, we found significantly larger left and right PA diameters in humans, whereas no differences were found for main PA diameters and bifurcation angle. Comparing hemodynamic boundary conditions, we found a significantly smaller heart rate and a significantly higher peak systolic main PA flow rate in humans, whereas no significant differences for cardiac output were found. The human in silico PAPS study found no relevant changes in hemodynamics increasing the risk of thrombus formation after sensor implantation. This is also valid for PAPS that were non-optimally implanted. Thus, despite differences between species, findings of the in silico animal study were confirmed by the human in silico study.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.