Perumthuruthil Suseelan Vishnu, Justin Del Bel Belluz, M. Angelica Peña, Brian P. V. Hunt, Anna Vazhova, Midhun Shah Hussain, Hongyan Xi, Astrid Bracher, Maycira Costa
{"title":"Assessing Winter Phytoplankton Community Composition Dynamics and Their Response to Environmental Drivers in the Subarctic Northeast Pacific","authors":"Perumthuruthil Suseelan Vishnu, Justin Del Bel Belluz, M. Angelica Peña, Brian P. V. Hunt, Anna Vazhova, Midhun Shah Hussain, Hongyan Xi, Astrid Bracher, Maycira Costa","doi":"10.1029/2023JC020699","DOIUrl":null,"url":null,"abstract":"<p>The subarctic northeast Pacific (SNEP) is a high-nutrient, low-chlorophyll region where primary productivity is limited by bioavailable iron during the spring through autumn, and by light limitation during winter. Here, we investigate the spatio-temporal distribution and drivers of SNEP surface phytoplankton biomass and community composition in the winters of 2019 and 2020 using in situ environmental data, chemotaxonomic analysis of phytoplankton pigment samples, and Sentinel-3A Ocean Land Color Instrument imagery. The utilized satellite-based algorithm showed promise replicating the expected trends of: (a) homogenous phytoplankton communities dominated by haptophytes, green algae, and pelagophytes in highly mixed light-limited oceanic waters and; (b) increased diatoms in coastal Haida Gwaii waters with reduced mixed-layer depth (MLD) and salinity. Unexpectedly, increases in cryptophytes were observed in the northern extents of the SNEP, which coincided with winter marine heatwave driven reductions in MLDs and also the presence of a mesoscale eddy. This finding highlights a deviation from expected homogeneous phytoplankton conditions, which may be systematically missed by spatially and temporally constrained in situ sampling. The further advancement and deployment of the satellite-based algorithm could significantly expand the understanding of winter phytoplankton dynamics in the SNEP, a critical period for Pacific salmon survival, improving the understanding of trophic linkages and match/mismatch dynamics, and contributing to improve the forecasting of salmon returns.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JC020699","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JC020699","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The subarctic northeast Pacific (SNEP) is a high-nutrient, low-chlorophyll region where primary productivity is limited by bioavailable iron during the spring through autumn, and by light limitation during winter. Here, we investigate the spatio-temporal distribution and drivers of SNEP surface phytoplankton biomass and community composition in the winters of 2019 and 2020 using in situ environmental data, chemotaxonomic analysis of phytoplankton pigment samples, and Sentinel-3A Ocean Land Color Instrument imagery. The utilized satellite-based algorithm showed promise replicating the expected trends of: (a) homogenous phytoplankton communities dominated by haptophytes, green algae, and pelagophytes in highly mixed light-limited oceanic waters and; (b) increased diatoms in coastal Haida Gwaii waters with reduced mixed-layer depth (MLD) and salinity. Unexpectedly, increases in cryptophytes were observed in the northern extents of the SNEP, which coincided with winter marine heatwave driven reductions in MLDs and also the presence of a mesoscale eddy. This finding highlights a deviation from expected homogeneous phytoplankton conditions, which may be systematically missed by spatially and temporally constrained in situ sampling. The further advancement and deployment of the satellite-based algorithm could significantly expand the understanding of winter phytoplankton dynamics in the SNEP, a critical period for Pacific salmon survival, improving the understanding of trophic linkages and match/mismatch dynamics, and contributing to improve the forecasting of salmon returns.