Elisa Quarta, Marwane Bourqqia-Ramzi, David Muñoz-Rodriguez, María Teresa García-Esteban, Antonio Murciano-Cespedosa, Álvaro Mateos González, Francisco José Conejero-Meca, Juan Lombardo-Hernandez, Jesús Mansilla-Guardiola, Simona Baroni, Simonetta Geninatti Crich, Stefano Geuna, Luca Munaron, Deborah Chiabrando, Celia Herrera-Rincon
{"title":"Impact of Iron Deficiency on the Growth and Bioelectrical Profile of Different Gut Bacteria","authors":"Elisa Quarta, Marwane Bourqqia-Ramzi, David Muñoz-Rodriguez, María Teresa García-Esteban, Antonio Murciano-Cespedosa, Álvaro Mateos González, Francisco José Conejero-Meca, Juan Lombardo-Hernandez, Jesús Mansilla-Guardiola, Simona Baroni, Simonetta Geninatti Crich, Stefano Geuna, Luca Munaron, Deborah Chiabrando, Celia Herrera-Rincon","doi":"10.1002/mbo3.70015","DOIUrl":null,"url":null,"abstract":"<p>Scope: Iron deficiency (ID) is the most common nutritional deficiency worldwide, impacting gut bacteria's metabolism and cellular biochemistry, but its effects on the microbiota-gut-brain axis (MGB) are poorly understood. Early-life ID-related dysbiosis is linked to neurodevelopmental impairments like autism and attention deficit hyperactivity disorder. Studying ID's impact on bacterial signaling can guide interventions to target MGB in iron-deficient populations. This study examined the responses of <i>Escherichia coli</i> (<i>E. coli</i>) and <i>Limosilactobacillus reuteri</i> (<i>L. reuteri</i>) to in-vitro ID conditions using the iron chelator 2,2’-Bipyridyl (BP). Methods and Results: We assessed and modeled their growth and cultivability and explored their bioelectric profiles using the voltage-sensitive dye DiBAC4(3). Results showed differential responses: <i>L. reuteri</i>'s growth and cultivability were unaffected by BP, while <i>E. coli</i>'s growth rate and cultivability decreased under ID. Additionally, we created a deterministic mathematical model that demonstrated a decrease in the population's average reproduction rate in <i>E. coli</i> under ID. Only <i>E. coli</i> exhibited an altered bioelectric profile, marked by increased cell depolarization in ID conditions, which was largely rescued upon the addition of a saturating concentration of iron. Conclusion: These findings highlight specific bioelectrical responses in gut bacteria to ID. Understanding this variability is crucial for deciphering the microbiota's role in health and disease, particularly concerning nutritional iron imbalance and bacterial signaling in the MGB.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":"14 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.70015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MicrobiologyOpen","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.70015","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Scope: Iron deficiency (ID) is the most common nutritional deficiency worldwide, impacting gut bacteria's metabolism and cellular biochemistry, but its effects on the microbiota-gut-brain axis (MGB) are poorly understood. Early-life ID-related dysbiosis is linked to neurodevelopmental impairments like autism and attention deficit hyperactivity disorder. Studying ID's impact on bacterial signaling can guide interventions to target MGB in iron-deficient populations. This study examined the responses of Escherichia coli (E. coli) and Limosilactobacillus reuteri (L. reuteri) to in-vitro ID conditions using the iron chelator 2,2’-Bipyridyl (BP). Methods and Results: We assessed and modeled their growth and cultivability and explored their bioelectric profiles using the voltage-sensitive dye DiBAC4(3). Results showed differential responses: L. reuteri's growth and cultivability were unaffected by BP, while E. coli's growth rate and cultivability decreased under ID. Additionally, we created a deterministic mathematical model that demonstrated a decrease in the population's average reproduction rate in E. coli under ID. Only E. coli exhibited an altered bioelectric profile, marked by increased cell depolarization in ID conditions, which was largely rescued upon the addition of a saturating concentration of iron. Conclusion: These findings highlight specific bioelectrical responses in gut bacteria to ID. Understanding this variability is crucial for deciphering the microbiota's role in health and disease, particularly concerning nutritional iron imbalance and bacterial signaling in the MGB.
期刊介绍:
MicrobiologyOpen is a peer reviewed, fully open access, broad-scope, and interdisciplinary journal delivering rapid decisions and fast publication of microbial science, a field which is undergoing a profound and exciting evolution in this post-genomic era.
The journal aims to serve the research community by providing a vehicle for authors wishing to publish quality research in both fundamental and applied microbiology. Our goal is to publish articles that stimulate discussion and debate, as well as add to our knowledge base and further the understanding of microbial interactions and microbial processes.
MicrobiologyOpen gives prompt and equal consideration to articles reporting theoretical, experimental, applied, and descriptive work in all aspects of bacteriology, virology, mycology and protistology, including, but not limited to:
- agriculture
- antimicrobial resistance
- astrobiology
- biochemistry
- biotechnology
- cell and molecular biology
- clinical microbiology
- computational, systems, and synthetic microbiology
- environmental science
- evolutionary biology, ecology, and systematics
- food science and technology
- genetics and genomics
- geobiology and earth science
- host-microbe interactions
- infectious diseases
- natural products discovery
- pharmaceutical and medicinal chemistry
- physiology
- plant pathology
- veterinary microbiology
We will consider submissions across unicellular and cell-cluster organisms: prokaryotes (bacteria, archaea) and eukaryotes (fungi, protists, microalgae, lichens), as well as viruses and prions infecting or interacting with microorganisms, plants and animals, including genetic, biochemical, biophysical, bioinformatic and structural analyses.
The journal features Original Articles (including full Research articles, Method articles, and Short Communications), Commentaries, Reviews, and Editorials. Original papers must report well-conducted research with conclusions supported by the data presented in the article. We also support confirmatory research and aim to work with authors to meet reviewer expectations.
MicrobiologyOpen publishes articles submitted directly to the journal and those referred from other Wiley journals.