{"title":"GABAergic Signaling Underlying REM Sleep Deprivation-Induced Spatial Working Memory Deficits","authors":"Peeraporn Varinthra, Shu-Ching Shih, Ingrid Y Liu","doi":"10.1002/brb3.70607","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Introduction</h3>\n \n <p>Declining spatial working memory (WM) is an early hallmark of Alzheimer's disease (AD). Sleep disturbance exacerbates spatial WM and increases AD risk. The GABAergic system, crucial for sleep regulation, may mediate this link. We thus investigate the relationship between spatial WM and hippocampal GABAergic signaling during rapid eye movement sleep deprivation (REM-SD) in AD model mice.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We assessed spatial and non-spatial WM, locomotor activity, and anxiety-like behavior in 6-month-old triple transgenic (3xTg) AD mice and wild-type (WT) controls, with and without REM-SD (5 days, 4 h/day). We then used immunofluorescence to quantify GABA<sub>A</sub>α1, GABA<sub>B</sub>R1, GAD67, and GABA levels in the prefrontal cortex (PFC) and hippocampus and analyze the correlations with behavioral outcomes.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>REM-SD increased locomotor activity, reduced anxiety-like behavior, and improved non-spatial WM in 3xTg-AD mice. Conversely, REM-SD impaired spatial WM in WT mice, which was also demonstrated in 3xTg-AD mice. Increased hippocampal GABA levels are correlated with improved non-spatial WM in 3xTg+SD mice. In contrast, impaired spatial WM in WT+SD mice was associated with elevated hippocampal GABA and GABA<sub>B</sub>R1, decreased hippocampal GAD67, and reduced PFC GABA levels. Notably, spatial WM in 3xTg+SD and 3xTg control mice related to increased GABA<sub>A</sub>α1 in the PFC and hippocampus and GAD67 in hippocampal CA1, along with decreased GABA<sub>B</sub>R1 and GAD67 in the dentate gyrus.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>REM-SD-induced alterations in WM performance are linked to GABAergic signaling changes in the PFC and hippocampus, with distinct patterns in WT and 3xTg-AD mice. This study provides insight into AD pathologies and potential therapeutic targets for sleep-related cognitive impairments.</p>\n </section>\n </div>","PeriodicalId":9081,"journal":{"name":"Brain and Behavior","volume":"15 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brb3.70607","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brb3.70607","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Declining spatial working memory (WM) is an early hallmark of Alzheimer's disease (AD). Sleep disturbance exacerbates spatial WM and increases AD risk. The GABAergic system, crucial for sleep regulation, may mediate this link. We thus investigate the relationship between spatial WM and hippocampal GABAergic signaling during rapid eye movement sleep deprivation (REM-SD) in AD model mice.
Methods
We assessed spatial and non-spatial WM, locomotor activity, and anxiety-like behavior in 6-month-old triple transgenic (3xTg) AD mice and wild-type (WT) controls, with and without REM-SD (5 days, 4 h/day). We then used immunofluorescence to quantify GABAAα1, GABABR1, GAD67, and GABA levels in the prefrontal cortex (PFC) and hippocampus and analyze the correlations with behavioral outcomes.
Results
REM-SD increased locomotor activity, reduced anxiety-like behavior, and improved non-spatial WM in 3xTg-AD mice. Conversely, REM-SD impaired spatial WM in WT mice, which was also demonstrated in 3xTg-AD mice. Increased hippocampal GABA levels are correlated with improved non-spatial WM in 3xTg+SD mice. In contrast, impaired spatial WM in WT+SD mice was associated with elevated hippocampal GABA and GABABR1, decreased hippocampal GAD67, and reduced PFC GABA levels. Notably, spatial WM in 3xTg+SD and 3xTg control mice related to increased GABAAα1 in the PFC and hippocampus and GAD67 in hippocampal CA1, along with decreased GABABR1 and GAD67 in the dentate gyrus.
Conclusion
REM-SD-induced alterations in WM performance are linked to GABAergic signaling changes in the PFC and hippocampus, with distinct patterns in WT and 3xTg-AD mice. This study provides insight into AD pathologies and potential therapeutic targets for sleep-related cognitive impairments.
期刊介绍:
Brain and Behavior is supported by other journals published by Wiley, including a number of society-owned journals. The journals listed below support Brain and Behavior and participate in the Manuscript Transfer Program by referring articles of suitable quality and offering authors the option to have their paper, with any peer review reports, automatically transferred to Brain and Behavior.
* [Acta Psychiatrica Scandinavica](https://publons.com/journal/1366/acta-psychiatrica-scandinavica)
* [Addiction Biology](https://publons.com/journal/1523/addiction-biology)
* [Aggressive Behavior](https://publons.com/journal/3611/aggressive-behavior)
* [Brain Pathology](https://publons.com/journal/1787/brain-pathology)
* [Child: Care, Health and Development](https://publons.com/journal/6111/child-care-health-and-development)
* [Criminal Behaviour and Mental Health](https://publons.com/journal/3839/criminal-behaviour-and-mental-health)
* [Depression and Anxiety](https://publons.com/journal/1528/depression-and-anxiety)
* Developmental Neurobiology
* [Developmental Science](https://publons.com/journal/1069/developmental-science)
* [European Journal of Neuroscience](https://publons.com/journal/1441/european-journal-of-neuroscience)
* [Genes, Brain and Behavior](https://publons.com/journal/1635/genes-brain-and-behavior)
* [GLIA](https://publons.com/journal/1287/glia)
* [Hippocampus](https://publons.com/journal/1056/hippocampus)
* [Human Brain Mapping](https://publons.com/journal/500/human-brain-mapping)
* [Journal for the Theory of Social Behaviour](https://publons.com/journal/7330/journal-for-the-theory-of-social-behaviour)
* [Journal of Comparative Neurology](https://publons.com/journal/1306/journal-of-comparative-neurology)
* [Journal of Neuroimaging](https://publons.com/journal/6379/journal-of-neuroimaging)
* [Journal of Neuroscience Research](https://publons.com/journal/2778/journal-of-neuroscience-research)
* [Journal of Organizational Behavior](https://publons.com/journal/1123/journal-of-organizational-behavior)
* [Journal of the Peripheral Nervous System](https://publons.com/journal/3929/journal-of-the-peripheral-nervous-system)
* [Muscle & Nerve](https://publons.com/journal/4448/muscle-and-nerve)
* [Neural Pathology and Applied Neurobiology](https://publons.com/journal/2401/neuropathology-and-applied-neurobiology)