The Adsorption Behavior of the Fission Product of Cs and Graphite in the HTR-10 Primary Loop: Electronic Structure and Interaction Properties

IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Meiduo Wu, Prof.Dr. Peng Li, Prof.Dr. Feng Xie, Prof.Dr. Jie Ma
{"title":"The Adsorption Behavior of the Fission Product of Cs and Graphite in the HTR-10 Primary Loop: Electronic Structure and Interaction Properties","authors":"Meiduo Wu,&nbsp;Prof.Dr. Peng Li,&nbsp;Prof.Dr. Feng Xie,&nbsp;Prof.Dr. Jie Ma","doi":"10.1002/slct.202406212","DOIUrl":null,"url":null,"abstract":"<p>Understanding radioactive dust behavior is essential for nuclear safety assessments, particularly in high-temperature pebble-bed reactors. Current knowledge gaps in microscopic interaction mechanisms under extreme conditions have hindered progress in this field. Our study bridges this gap through systematic modeling of cesium-graphite systems, focusing on the adsorption behavior of cesium's predominant chemical forms (Cs<sub>2</sub>, Cs<sub>4</sub>, Cs₂CO₃, and CsOH) on graphite clusters, guided by thermodynamic predictions for reactor conditions. The results demonstrate that atomic cesium exhibits superior adsorption affinity due to dominant electrostatic interactions, while molecular forms (Cs₂CO₃/CsOH) show reduced adsorption capacity as their oxygen atoms create an energetic barrier that counteracts the combined effects of dispersion and electrostatic forces. Temperature-dependent analysis reveals atomic cesium remains stably adsorbed on graphite surfaces below 627 K. These findings provide both a predictive framework for fission product morphology in radioactive dust and fundamental insights into interfacial interactions that govern cesium adsorption behavior—critical knowledge for enhancing nuclear reactor safety protocols.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"10 21","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.202406212","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding radioactive dust behavior is essential for nuclear safety assessments, particularly in high-temperature pebble-bed reactors. Current knowledge gaps in microscopic interaction mechanisms under extreme conditions have hindered progress in this field. Our study bridges this gap through systematic modeling of cesium-graphite systems, focusing on the adsorption behavior of cesium's predominant chemical forms (Cs2, Cs4, Cs₂CO₃, and CsOH) on graphite clusters, guided by thermodynamic predictions for reactor conditions. The results demonstrate that atomic cesium exhibits superior adsorption affinity due to dominant electrostatic interactions, while molecular forms (Cs₂CO₃/CsOH) show reduced adsorption capacity as their oxygen atoms create an energetic barrier that counteracts the combined effects of dispersion and electrostatic forces. Temperature-dependent analysis reveals atomic cesium remains stably adsorbed on graphite surfaces below 627 K. These findings provide both a predictive framework for fission product morphology in radioactive dust and fundamental insights into interfacial interactions that govern cesium adsorption behavior—critical knowledge for enhancing nuclear reactor safety protocols.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Cs和石墨在HTR-10一级回路中的吸附行为:电子结构和相互作用性质
了解放射性粉尘的行为对核安全评估至关重要,特别是在高温球床反应堆中。目前在极端条件下微观相互作用机制方面的知识差距阻碍了这一领域的进展。我们的研究通过对铯-石墨系统的系统建模来弥补这一差距,重点关注铯的主要化学形式(Cs2, Cs4, Cs₂CO₃和CsOH)在石墨团簇上的吸附行为,并以反应器条件的热力学预测为指导。结果表明,由于主要的静电相互作用,铯原子表现出优越的吸附亲和力,而分子形式(Cs₂CO₃/CsOH)表现出降低的吸附能力,因为它们的氧原子产生了一个能量屏障,抵消了分散力和静电力的联合作用。温度依赖性分析表明,原子铯在627 K以下的石墨表面上仍然稳定吸附。这些发现为放射性粉尘中的裂变产物形态提供了预测框架,并为控制铯吸附行为的界面相互作用提供了基本见解——这是增强核反应堆安全协议的关键知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemistrySelect
ChemistrySelect Chemistry-General Chemistry
CiteScore
3.30
自引率
4.80%
发文量
1809
审稿时长
1.6 months
期刊介绍: ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信