Transcription Factors and Coregulators in Schwann Cell Differentiation, Myelination, and Remyelination: Implications for Peripheral Neuropathy

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Sang-Heum Han, Jun-Gi Cho, Su-Jeong Park, Yoon Kyung Shin, Young Bin Hong, Jin-Yeong Han, Hwan Tae Park, Joo-In Park
{"title":"Transcription Factors and Coregulators in Schwann Cell Differentiation, Myelination, and Remyelination: Implications for Peripheral Neuropathy","authors":"Sang-Heum Han,&nbsp;Jun-Gi Cho,&nbsp;Su-Jeong Park,&nbsp;Yoon Kyung Shin,&nbsp;Young Bin Hong,&nbsp;Jin-Yeong Han,&nbsp;Hwan Tae Park,&nbsp;Joo-In Park","doi":"10.1002/jnr.70053","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Schwann cells (SCs) are required for supporting axons, forming myelin, and facilitating repair through remyelination after injury in the peripheral nervous system (PNS). Processes of differentiation, myelination, and remyelination of SCs are tightly modulated by a complex network of transcription factors and coregulators, including Sox10, Oct6/Pou3f1, Krox20/Egr2, Nab1/2, YY1, COUP-TFII/NR2F2, YAP/TAZ-TEAD1, c-Jun, Sox2, Zeb2, and Etv1/Er81. These factors can regulate the expression of essential target genes such as <i>Mpz</i> and <i>Mbp</i> in SC myelination and repair. Genetic mutations or dysregulation within this network can lead to peripheral neuropathies such as Charcot–Marie–Tooth disease. However, the transcriptional regulatory network of differentiation, myelination, and remyelination of SCs has not been fully understood yet. Thus, this review briefly introduces processes of differentiation, myelination, and remyelination of SCs and explores the role and molecular mechanisms of each transcription factor and coregulator in differentiation and myelination of SCs and their remyelination following nerve injury. Clinical implications for peripheral neuropathies associated with specific gene mutations and variations of transcription factors and coregulators affecting SC biology are also discussed.</p>\n </div>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"103 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnr.70053","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Schwann cells (SCs) are required for supporting axons, forming myelin, and facilitating repair through remyelination after injury in the peripheral nervous system (PNS). Processes of differentiation, myelination, and remyelination of SCs are tightly modulated by a complex network of transcription factors and coregulators, including Sox10, Oct6/Pou3f1, Krox20/Egr2, Nab1/2, YY1, COUP-TFII/NR2F2, YAP/TAZ-TEAD1, c-Jun, Sox2, Zeb2, and Etv1/Er81. These factors can regulate the expression of essential target genes such as Mpz and Mbp in SC myelination and repair. Genetic mutations or dysregulation within this network can lead to peripheral neuropathies such as Charcot–Marie–Tooth disease. However, the transcriptional regulatory network of differentiation, myelination, and remyelination of SCs has not been fully understood yet. Thus, this review briefly introduces processes of differentiation, myelination, and remyelination of SCs and explores the role and molecular mechanisms of each transcription factor and coregulator in differentiation and myelination of SCs and their remyelination following nerve injury. Clinical implications for peripheral neuropathies associated with specific gene mutations and variations of transcription factors and coregulators affecting SC biology are also discussed.

雪旺细胞分化、髓鞘形成和再髓鞘形成中的转录因子和共调节因子:对周围神经病变的影响
周围神经系统(PNS)损伤后,需要雪旺细胞(SCs)支持轴突、形成髓磷脂和促进髓鞘再生修复。SCs的分化、髓鞘形成和再髓鞘形成过程受到转录因子和共调节因子的复杂网络的密切调节,包括Sox10、Oct6/Pou3f1、Krox20/Egr2、Nab1/2、YY1、COUP-TFII/NR2F2、YAP/TAZ-TEAD1、c-Jun、Sox2、Zeb2和Etv1/Er81。这些因子可以调节SC髓鞘形成和修复过程中必需靶基因Mpz和Mbp的表达。该网络中的基因突变或失调可导致周围神经病变,如腓骨肌萎缩症。然而,SCs分化、髓鞘形成和再髓鞘形成的转录调控网络尚未完全了解。因此,本文简要介绍了神经损伤后SCs的分化、髓鞘形成和再髓鞘形成过程,并探讨了各转录因子和共调节因子在神经损伤后SCs的分化、髓鞘形成和再髓鞘形成中的作用和分子机制。与特定基因突变和转录因子和影响SC生物学的共调节因子的变异相关的周围神经病变的临床意义也进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience Research
Journal of Neuroscience Research 医学-神经科学
CiteScore
9.50
自引率
2.40%
发文量
145
审稿时长
1 months
期刊介绍: The Journal of Neuroscience Research (JNR) publishes novel research results that will advance our understanding of the development, function and pathophysiology of the nervous system, using molecular, cellular, systems, and translational approaches. JNR covers both basic research and clinical aspects of neurology, neuropathology, psychiatry or psychology. The journal focuses on uncovering the intricacies of brain structure and function. Research published in JNR covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of the nervous system, with emphasis on how disease modifies the function and organization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信