{"title":"Exploring the importance of environmental justice variables for predicting energy burden in the contiguous United States","authors":"Jasmine Garland , Kyri Baker , Balaji Rajagopalan , Ben Livneh","doi":"10.1016/j.isci.2025.112559","DOIUrl":null,"url":null,"abstract":"<div><div>The United States is one of the largest energy consumers per capita, requiring households to have adequate energy expenditures to keep up with modern demand regardless of financial cost. This paper investigates energy burden, defined as the ratio of household energy expenditures to household income. There is a lack of research on creating equitable policies for energy-burdened communities, including environmental justice indicators and community characteristics that could be used to predict and understand energy burden, along with socioeconomic status, building characteristics, and power outages, beneficial to policymakers, engineers, and advocates. Here, generalized additive models and random forests are explored for energy burden prediction using the original dataset and principal components, followed by a leave-one-column-out (LOCO) analysis to investigate indicator influence, with 25 identical indicators out of 42 appearing in the top 100 models. The generalized additive models generally outperform the random forests, with the best-performing model yielding a coefficient of determination of 0.92.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 6","pages":"Article 112559"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258900422500820X","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The United States is one of the largest energy consumers per capita, requiring households to have adequate energy expenditures to keep up with modern demand regardless of financial cost. This paper investigates energy burden, defined as the ratio of household energy expenditures to household income. There is a lack of research on creating equitable policies for energy-burdened communities, including environmental justice indicators and community characteristics that could be used to predict and understand energy burden, along with socioeconomic status, building characteristics, and power outages, beneficial to policymakers, engineers, and advocates. Here, generalized additive models and random forests are explored for energy burden prediction using the original dataset and principal components, followed by a leave-one-column-out (LOCO) analysis to investigate indicator influence, with 25 identical indicators out of 42 appearing in the top 100 models. The generalized additive models generally outperform the random forests, with the best-performing model yielding a coefficient of determination of 0.92.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.