Parisa Khoshvaght , Amir Haider , Amir Masoud Rahmani , Farhad Soleimanian Gharehchopogh , Ferzat Anka , Jan Lansky , Mehdi Hosseinzadeh
{"title":"A multi-objective deep reinforcement learning algorithm for spatio-temporal latency optimization in mobile IoT-enabled edge computing networks","authors":"Parisa Khoshvaght , Amir Haider , Amir Masoud Rahmani , Farhad Soleimanian Gharehchopogh , Ferzat Anka , Jan Lansky , Mehdi Hosseinzadeh","doi":"10.1016/j.simpat.2025.103161","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid increase in Mobile Internet of Things (IoT) devices requires novel computational frameworks. These frameworks must meet strict latency and energy efficiency requirements in Edge and Mobile Edge Computing (MEC) systems. Spatio-temporal dynamics, which include the position of edge servers and the timing of task schedules, pose a complex optimization problem. These challenges are further exacerbated by the heterogeneity of IoT workloads and the constraints imposed by device mobility. The balance between computational overhead and communication challenges is also a problem. To solve these issues, advanced methods are needed for resource management and dynamic task scheduling in mobile IoT and edge computing environments. In this paper, we propose a Deep Reinforcement Learning (DRL) multi-objective algorithm, called a Double Deep Q-Learning (DDQN) framework enhanced with Spatio-temporal mobility prediction, latency-aware task offloading, and energy-constrained IoT device trajectory optimization for federated edge computing networks. DDQN was chosen for its optimize stability and reduced overestimation in Q-values. The framework employs a reward-driven optimization model that dynamically prioritizes latency-sensitive tasks, minimizes task migration overhead, and balances energy efficiency across devices and edge servers. It integrates dynamic resource allocation algorithms to address random task arrival patterns and real-time computational demands. Simulations demonstrate up to a 35 % reduction in end-to-end latency, a 28 % improvement in energy efficiency, and a 20 % decrease in the deadline-miss ratio compared to benchmark algorithms.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"143 ","pages":"Article 103161"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X25000966","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid increase in Mobile Internet of Things (IoT) devices requires novel computational frameworks. These frameworks must meet strict latency and energy efficiency requirements in Edge and Mobile Edge Computing (MEC) systems. Spatio-temporal dynamics, which include the position of edge servers and the timing of task schedules, pose a complex optimization problem. These challenges are further exacerbated by the heterogeneity of IoT workloads and the constraints imposed by device mobility. The balance between computational overhead and communication challenges is also a problem. To solve these issues, advanced methods are needed for resource management and dynamic task scheduling in mobile IoT and edge computing environments. In this paper, we propose a Deep Reinforcement Learning (DRL) multi-objective algorithm, called a Double Deep Q-Learning (DDQN) framework enhanced with Spatio-temporal mobility prediction, latency-aware task offloading, and energy-constrained IoT device trajectory optimization for federated edge computing networks. DDQN was chosen for its optimize stability and reduced overestimation in Q-values. The framework employs a reward-driven optimization model that dynamically prioritizes latency-sensitive tasks, minimizes task migration overhead, and balances energy efficiency across devices and edge servers. It integrates dynamic resource allocation algorithms to address random task arrival patterns and real-time computational demands. Simulations demonstrate up to a 35 % reduction in end-to-end latency, a 28 % improvement in energy efficiency, and a 20 % decrease in the deadline-miss ratio compared to benchmark algorithms.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.