{"title":"Transcranial electrical stimulation (TES) in human motor Optimization: Mechanisms, safety, and emerging applications","authors":"Jingfeng Wang , Li Wu , Mingming Sun , Yuxiang Wu","doi":"10.1016/j.bbrep.2025.102055","DOIUrl":null,"url":null,"abstract":"<div><div>Non-invasive brain stimulation (NIBS) has emerged as a rapidly advancing field, offering promising therapeutic interventions for a range of neurological disorders while effectively bridging the gap between laboratory research and clinical applications. Among NIBS technologies, transcranial electrical stimulation (TES) stands out as a notable example, utilizing electrodes of varying sizes to deliver low-intensity electrical currents to specific regions of the cerebral cortex. This technique facilitates the modulation of neuronal excitability, regulation of brainwave activity, promotion of neural remodeling and repair, enhancement of cerebral blood flow, and improvement of brain-muscle connectivity. Despite its potential, current research on the effects of TES on motor function across diverse populations, particularly from a central nervous system perspective, remains limited. This review seeks to establish a theoretical framework for the future advancement of TES technology in sports science, elucidate the neurophysiological mechanisms underlying various TES modalities, and synthesize the most recent experimental findings from the past two decades regarding its impact on physical fitness, motor skill acquisition, and recovery in different populations.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"43 ","pages":"Article 102055"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580825001426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-invasive brain stimulation (NIBS) has emerged as a rapidly advancing field, offering promising therapeutic interventions for a range of neurological disorders while effectively bridging the gap between laboratory research and clinical applications. Among NIBS technologies, transcranial electrical stimulation (TES) stands out as a notable example, utilizing electrodes of varying sizes to deliver low-intensity electrical currents to specific regions of the cerebral cortex. This technique facilitates the modulation of neuronal excitability, regulation of brainwave activity, promotion of neural remodeling and repair, enhancement of cerebral blood flow, and improvement of brain-muscle connectivity. Despite its potential, current research on the effects of TES on motor function across diverse populations, particularly from a central nervous system perspective, remains limited. This review seeks to establish a theoretical framework for the future advancement of TES technology in sports science, elucidate the neurophysiological mechanisms underlying various TES modalities, and synthesize the most recent experimental findings from the past two decades regarding its impact on physical fitness, motor skill acquisition, and recovery in different populations.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.