LiDSCUNet++: A lightweight depth separable convolutional UNet++ for vertebral column segmentation and spondylosis detection

IF 2.2 3区 农林科学 Q1 VETERINARY SCIENCES
Krishna K. Agrawal, Gautam Kumar
{"title":"LiDSCUNet++: A lightweight depth separable convolutional UNet++ for vertebral column segmentation and spondylosis detection","authors":"Krishna K. Agrawal,&nbsp;Gautam Kumar","doi":"10.1016/j.rvsc.2025.105703","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate computer-aided diagnosis systems rely on precise segmentation of the vertebral column to assist physicians in diagnosing various disorders. However, segmenting spinal disks and bones becomes challenging in the presence of abnormalities and complex anatomical structures. While Deep Convolutional Neural Networks (DCNNs) achieve remarkable results in medical image segmentation, their performance is limited by data insufficiency and the high computational complexity of existing solutions. This paper introduces LiDSCUNet++, a lightweight deep learning framework based on depthwise-separable and pointwise convolutions integrated with UNet++ for vertebral column segmentation. The model segments vertebral anomalies from dog radiographs, and the results are further processed by YOLOv8 for automated detection of Spondylosis Deformans. LiDSCUNet++ delivers comparable segmentation performance while significantly reducing trainable parameters, memory usage, energy consumption, and computational time, making it an efficient and practical solution for medical image analysis.</div></div>","PeriodicalId":21083,"journal":{"name":"Research in veterinary science","volume":"192 ","pages":"Article 105703"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in veterinary science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034528825001778","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate computer-aided diagnosis systems rely on precise segmentation of the vertebral column to assist physicians in diagnosing various disorders. However, segmenting spinal disks and bones becomes challenging in the presence of abnormalities and complex anatomical structures. While Deep Convolutional Neural Networks (DCNNs) achieve remarkable results in medical image segmentation, their performance is limited by data insufficiency and the high computational complexity of existing solutions. This paper introduces LiDSCUNet++, a lightweight deep learning framework based on depthwise-separable and pointwise convolutions integrated with UNet++ for vertebral column segmentation. The model segments vertebral anomalies from dog radiographs, and the results are further processed by YOLOv8 for automated detection of Spondylosis Deformans. LiDSCUNet++ delivers comparable segmentation performance while significantly reducing trainable parameters, memory usage, energy consumption, and computational time, making it an efficient and practical solution for medical image analysis.
用于脊柱分割和颈椎病检测的轻量级深度可分离卷积unet++
精确的计算机辅助诊断系统依赖于脊柱的精确分割来帮助医生诊断各种疾病。然而,在存在异常和复杂解剖结构的情况下,分割椎间盘和骨骼变得具有挑战性。虽然深度卷积神经网络(Deep Convolutional Neural Networks, DCNNs)在医学图像分割方面取得了显著的效果,但其性能受到数据不足和现有解决方案计算复杂度高的限制。本文介绍了一种基于深度可分和点向卷积的轻量级深度学习框架,该框架与unet++相结合,用于脊柱分割。该模型将狗的x线片上的椎体异常进行分割,并通过YOLOv8对结果进行进一步处理,以自动检测脊椎变形。LiDSCUNet++提供了相当的分割性能,同时显着减少了可训练参数,内存使用,能耗和计算时间,使其成为医学图像分析的高效实用解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research in veterinary science
Research in veterinary science 农林科学-兽医学
CiteScore
4.40
自引率
4.20%
发文量
312
审稿时长
75 days
期刊介绍: Research in Veterinary Science is an International multi-disciplinary journal publishing original articles, reviews and short communications of a high scientific and ethical standard in all aspects of veterinary and biomedical research. The primary aim of the journal is to inform veterinary and biomedical scientists of significant advances in veterinary and related research through prompt publication and dissemination. Secondly, the journal aims to provide a general multi-disciplinary forum for discussion and debate of news and issues concerning veterinary science. Thirdly, to promote the dissemination of knowledge to a broader range of professions, globally. High quality papers on all species of animals are considered, particularly those considered to be of high scientific importance and originality, and with interdisciplinary interest. The journal encourages papers providing results that have clear implications for understanding disease pathogenesis and for the development of control measures or treatments, as well as those dealing with a comparative biomedical approach, which represents a substantial improvement to animal and human health. Studies without a robust scientific hypothesis or that are preliminary, or of weak originality, as well as negative results, are not appropriate for the journal. Furthermore, observational approaches, case studies or field reports lacking an advancement in general knowledge do not fall within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信