Cristina Bernal , Eva Teira , Elisa Calvo-Martin , Maider Justel-Diez , Xosé Antón Álvarez-Salgado , Carlos Rocha , Mercedes de la Paz , Marta Álvarez , J. Severino P. Ibánhez
{"title":"Exploring the land-ocean biogeochemical and microbial connectivity in the Ría de Vigo (NW Iberian Peninsula) through submarine groundwater discharge","authors":"Cristina Bernal , Eva Teira , Elisa Calvo-Martin , Maider Justel-Diez , Xosé Antón Álvarez-Salgado , Carlos Rocha , Mercedes de la Paz , Marta Álvarez , J. Severino P. Ibánhez","doi":"10.1016/j.ecss.2025.109339","DOIUrl":null,"url":null,"abstract":"<div><div>Increasing evidence demonstrates the widespread occurrence of submarine groundwater discharge (SGD) in coastal zones, where it may influence biogeochemistry and microbial ecology. Here, we analyze the biogeochemical composition and microbial communities across diverse aquatic environments in a highly productive coastal system (Ría de Vigo, NW Iberian Peninsula), influenced by significant fresh SGD, to assess the extent of microbial and biogeochemical connectivity—i.e., mass transfer—among them. Samples were collected from surface and deep porewaters from two subterranean estuaries (STEs), surface seawater, riverine water, and continental groundwater. These samples were analyzed for a comprehensive set of microbial and biogeochemical variables, including radioisotopes used as SGD tracers. A significant correlation between SGD tracers and carbonate system parameters, N<sub>2</sub>O, and CH<sub>4</sub> concentrations in surface seawater indicates SGD influences biogeochemistry of the embayment. However, some of these solutes do not originate from continental groundwater but are produced in the local STEs, which act as biogeochemical reactors modifying fresh SGD. The findings also reveal highly diverse microbial communities, with higher diversity in STEs due to the variety of niches present. Indicator taxa included the phyla Euryarchaeota, Chloroflexi, Omnitrophicaeota, and the family Nitrosopumilaceae in STEs; the phylum Cyanobacteria and the family Burkholderiaceae in freshwater endmembers; and the Flavobacteriaceae and Cryomorphaceae families in seawater. Most operational taxonomic units (∼87 %) were unique to a single environment (river, continental groundwater, coastal water, or STE), showing STEs limit subterranean microbial transfer between groundwater and marine ecosystems. Our results highlight STEs as reservoirs of diversity and zones of intense biogeochemical reactivity.</div></div>","PeriodicalId":50497,"journal":{"name":"Estuarine Coastal and Shelf Science","volume":"322 ","pages":"Article 109339"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuarine Coastal and Shelf Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272771425002173","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing evidence demonstrates the widespread occurrence of submarine groundwater discharge (SGD) in coastal zones, where it may influence biogeochemistry and microbial ecology. Here, we analyze the biogeochemical composition and microbial communities across diverse aquatic environments in a highly productive coastal system (Ría de Vigo, NW Iberian Peninsula), influenced by significant fresh SGD, to assess the extent of microbial and biogeochemical connectivity—i.e., mass transfer—among them. Samples were collected from surface and deep porewaters from two subterranean estuaries (STEs), surface seawater, riverine water, and continental groundwater. These samples were analyzed for a comprehensive set of microbial and biogeochemical variables, including radioisotopes used as SGD tracers. A significant correlation between SGD tracers and carbonate system parameters, N2O, and CH4 concentrations in surface seawater indicates SGD influences biogeochemistry of the embayment. However, some of these solutes do not originate from continental groundwater but are produced in the local STEs, which act as biogeochemical reactors modifying fresh SGD. The findings also reveal highly diverse microbial communities, with higher diversity in STEs due to the variety of niches present. Indicator taxa included the phyla Euryarchaeota, Chloroflexi, Omnitrophicaeota, and the family Nitrosopumilaceae in STEs; the phylum Cyanobacteria and the family Burkholderiaceae in freshwater endmembers; and the Flavobacteriaceae and Cryomorphaceae families in seawater. Most operational taxonomic units (∼87 %) were unique to a single environment (river, continental groundwater, coastal water, or STE), showing STEs limit subterranean microbial transfer between groundwater and marine ecosystems. Our results highlight STEs as reservoirs of diversity and zones of intense biogeochemical reactivity.
期刊介绍:
Estuarine, Coastal and Shelf Science is an international multidisciplinary journal devoted to the analysis of saline water phenomena ranging from the outer edge of the continental shelf to the upper limits of the tidal zone. The journal provides a unique forum, unifying the multidisciplinary approaches to the study of the oceanography of estuaries, coastal zones, and continental shelf seas. It features original research papers, review papers and short communications treating such disciplines as zoology, botany, geology, sedimentology, physical oceanography.