State and disturbance source estimation in Fisher–Kolmogorov equation

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Áron Fehér, Lőrinc Márton
{"title":"State and disturbance source estimation in Fisher–Kolmogorov equation","authors":"Áron Fehér,&nbsp;Lőrinc Márton","doi":"10.1016/j.ifacsc.2025.100314","DOIUrl":null,"url":null,"abstract":"<div><div>The problem of state and disturbance estimation based on a limited number of measurements is addressed for processes that can be modeled by Fisher–Kolmogorov-type Partial Differential Equations (PDEs). The Petrov–Galerkin approximation is employed to derive an Ordinary Differential Equation (ODE) model suitable for observer design. A nonlinear state observer is introduced to estimate the state (solution) of the Fisher–Kolmogorov PDE based on this model. The observer can efficiently reconstruct spatially distributed biological, chemical, or ecological invasion-like processes by applying only a limited number of measurements. Using Lyapunov techniques, it is demonstrated that the proposed observer ensures the convergence of the estimated state to the true state, although the system’s nonlinearity does not satisfy globally the Lipschitz condition. In cases where the system’s dynamics are influenced by an unknown disturbance source, a spatial disturbance localization method is introduced, leveraging the same model. Furthermore, a technique for estimating the magnitude of the unknown disturbance is presented using disturbance observer methods. Simulation results are provided to demonstrate the efficacy of the proposed state and source estimation methods.</div></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"32 ","pages":"Article 100314"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601825000203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of state and disturbance estimation based on a limited number of measurements is addressed for processes that can be modeled by Fisher–Kolmogorov-type Partial Differential Equations (PDEs). The Petrov–Galerkin approximation is employed to derive an Ordinary Differential Equation (ODE) model suitable for observer design. A nonlinear state observer is introduced to estimate the state (solution) of the Fisher–Kolmogorov PDE based on this model. The observer can efficiently reconstruct spatially distributed biological, chemical, or ecological invasion-like processes by applying only a limited number of measurements. Using Lyapunov techniques, it is demonstrated that the proposed observer ensures the convergence of the estimated state to the true state, although the system’s nonlinearity does not satisfy globally the Lipschitz condition. In cases where the system’s dynamics are influenced by an unknown disturbance source, a spatial disturbance localization method is introduced, leveraging the same model. Furthermore, a technique for estimating the magnitude of the unknown disturbance is presented using disturbance observer methods. Simulation results are provided to demonstrate the efficacy of the proposed state and source estimation methods.
Fisher-Kolmogorov方程的状态和干扰源估计
对于可由fisher - kolmogorov型偏微分方程(PDEs)建模的过程,研究了基于有限数量测量的状态和干扰估计问题。采用Petrov-Galerkin近似推导出适合于观测器设计的常微分方程(ODE)模型。在此基础上引入非线性状态观测器来估计Fisher-Kolmogorov偏微分方程的状态(解)。观察者只需应用有限数量的测量,就可以有效地重建空间分布的生物、化学或生态入侵过程。利用李雅普诺夫技术,证明了所提出的观测器能够保证估计状态收敛到真实状态,尽管系统的非线性不能全局满足Lipschitz条件。在系统动力学受到未知干扰源影响的情况下,引入了利用相同模型的空间扰动定位方法。在此基础上,提出了一种利用扰动观测器估计未知扰动大小的方法。仿真结果验证了所提出的状态估计和源估计方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信