Near-Infrared Emission in Organic Cocrystals Based on Twisted-Component Pseudoencapsulation

IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tao Li, Bai-Tong Liu, Jia-Chuan Liu, Niharika Ashutosh Sule, Jennifer T. Ou, Jim Y. Huang, Chenxin Ou, Jian-Hua Jia* and Yuanning Feng*, 
{"title":"Near-Infrared Emission in Organic Cocrystals Based on Twisted-Component Pseudoencapsulation","authors":"Tao Li,&nbsp;Bai-Tong Liu,&nbsp;Jia-Chuan Liu,&nbsp;Niharika Ashutosh Sule,&nbsp;Jennifer T. Ou,&nbsp;Jim Y. Huang,&nbsp;Chenxin Ou,&nbsp;Jian-Hua Jia* and Yuanning Feng*,&nbsp;","doi":"10.1021/acsmaterialslett.5c0027510.1021/acsmaterialslett.5c00275","DOIUrl":null,"url":null,"abstract":"<p >Near-infrared (NIR) fluorescence, prized for deep optical penetration and high spatial resolution, can be achieved in organic cocrystals via donor–acceptor (D–A) charge-transfer (CT) emissions. We have rationally synthesized a series of cocrystals consisting of a twisted tetrachloroperylene dianhydride (<b>TCPDA</b>) as the electron-deficient acceptor, incorporating respectively with three different polycyclic aromatic hydrocarbons─i.e., triphenylene (<b>TP</b>), coronene (<b>Cor</b>), and perylene (<b>Per</b>)─as electron-rich donors. The introduction of a twisted component provides a pseudoencapsulation strategy to achieve fine-tuned control over stoichiometries, solid-state superstructures, and D–A interactions. Fluorescence emission spectra of these three cocrystals cover a wide range of wavelengths up to 861 nm. <b>TP</b>–<b>TCPDA</b> cocrystals with a two-photon absorption band reach into the NIR-II region because of the manipulation of the twisted configuration and noncovalent interactions. The pseudoencapsulation strategy of applying twisted components in cocrystals holds considerable promise for the future design and synthesis of advanced optical materials.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 6","pages":"2246–2254 2246–2254"},"PeriodicalIF":8.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialslett.5c00275","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00275","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Near-infrared (NIR) fluorescence, prized for deep optical penetration and high spatial resolution, can be achieved in organic cocrystals via donor–acceptor (D–A) charge-transfer (CT) emissions. We have rationally synthesized a series of cocrystals consisting of a twisted tetrachloroperylene dianhydride (TCPDA) as the electron-deficient acceptor, incorporating respectively with three different polycyclic aromatic hydrocarbons─i.e., triphenylene (TP), coronene (Cor), and perylene (Per)─as electron-rich donors. The introduction of a twisted component provides a pseudoencapsulation strategy to achieve fine-tuned control over stoichiometries, solid-state superstructures, and D–A interactions. Fluorescence emission spectra of these three cocrystals cover a wide range of wavelengths up to 861 nm. TPTCPDA cocrystals with a two-photon absorption band reach into the NIR-II region because of the manipulation of the twisted configuration and noncovalent interactions. The pseudoencapsulation strategy of applying twisted components in cocrystals holds considerable promise for the future design and synthesis of advanced optical materials.

基于扭曲组分假封装的有机共晶近红外发射
近红外(NIR)荧光具有深光学穿透性和高空间分辨率,可以通过供体-受体(D-A)电荷转移(CT)发射在有机共晶中实现。我们合理地合成了一系列以扭曲四氯苝二酐(TCPDA)为缺电子受体的共晶,分别与三种不同的多环芳烃(即:三苯(TP)、冠烯(Cor)和苝(Per)─为富电子供体。扭曲组件的引入提供了一种伪封装策略,以实现对化学计量、固态超结构和D-A相互作用的微调控制。这三种共晶的荧光发射光谱覆盖了宽的波长范围,最高可达861 nm。具有双光子吸收带的TP-TCPDA共晶体由于扭曲构型和非共价相互作用的操纵而进入NIR-II区。在共晶中应用扭曲元件的伪封装策略对未来先进光学材料的设计和合成具有相当大的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信