Wei Zhu, Yuchen Tang, Shun Hu, Wenjing Xu, Dong Yu, Jun Cao, Tingjuan Gao* and Aiguo Shen*,
{"title":"Three-Dimensional Printable Triple-Bonded Polymer Nanoparticles for Invisible Information Encryption and Robust Anti-Counterfeiting","authors":"Wei Zhu, Yuchen Tang, Shun Hu, Wenjing Xu, Dong Yu, Jun Cao, Tingjuan Gao* and Aiguo Shen*, ","doi":"10.1021/acsmaterialslett.5c0046410.1021/acsmaterialslett.5c00464","DOIUrl":null,"url":null,"abstract":"<p >In the evolving landscape of information encryption technologies, the integration of optical materials into three-dimensional (3D) codes has emerged as a promising solution. However, current approaches were limited by coding capacity, detective permeability, and a complicated preparation process. Addressing this gap, we present an approach involving the development of 3D embedded, invisible Raman codes with chemical vibrations employing 3D-printable triple-bonded nanoparticles. These colorless triple-bonded nanoparticles, characterized by the distinct and stable spectral features of spontaneous Raman scattering, ensure high transparency, durability, and coding capacity. By embedding multiple, visually undetectable Raman-based QR codes within the internal structure of 3D printed objects, rather than using visible measures on 2D surfaces, our multilayered encryption system significantly enhances the information security by invalidating single-layer decoding attempts and requiring the combination of multiple layers to decrypt the embedded information. This innovative approach offers superior security and robustness in information security.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 6","pages":"2343–2351 2343–2351"},"PeriodicalIF":9.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00464","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the evolving landscape of information encryption technologies, the integration of optical materials into three-dimensional (3D) codes has emerged as a promising solution. However, current approaches were limited by coding capacity, detective permeability, and a complicated preparation process. Addressing this gap, we present an approach involving the development of 3D embedded, invisible Raman codes with chemical vibrations employing 3D-printable triple-bonded nanoparticles. These colorless triple-bonded nanoparticles, characterized by the distinct and stable spectral features of spontaneous Raman scattering, ensure high transparency, durability, and coding capacity. By embedding multiple, visually undetectable Raman-based QR codes within the internal structure of 3D printed objects, rather than using visible measures on 2D surfaces, our multilayered encryption system significantly enhances the information security by invalidating single-layer decoding attempts and requiring the combination of multiple layers to decrypt the embedded information. This innovative approach offers superior security and robustness in information security.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.