{"title":"Precipitation characteristics and short-time aging treatment of Mg-Gd-Y-Zn-Zr alloy","authors":"Mu Meng, Zhiqiang Zhai, Genxing Lei, Zhaoming Yan, Weihao Wu, Qiang Wang, Zhimin Zhang","doi":"10.1016/j.jma.2025.05.004","DOIUrl":null,"url":null,"abstract":"Currently, Mg-Gd-Y-Zn-Zr alloys face the issue of a long aging duration. To establish a short-time aging treatment route, the precipitation characteristics and their effects on mechanical properties during elevated-temperature heat treatment prior to low-temperature aging treatment, low-temperature single-stage aging treatment, and low-temperature two-stage aging treatment were studied. The following results were obtained: Wider intragranular lamellar phases, including 14-LPSO and γ′′ phases, are more easily obtained during long-term holding at heat treatment temperatures of 400 °C and 450 °C. Although these lamellar phases do not contribute to strengthening, they enhance ductility by hindering crack propagation. Micro-sized <em>β</em> phases precipitate more readily at heat treatment temperatures of 300 °C and 350 °C. Intragranular needle-like <em>β</em> phases are not effective strengthening phases, and <em>β</em> phase precipitating along grain boundaries form a networked distribution, which reduces ductility. The nano-sized <em>β'</em> phase, as the main strengthening phase, is more likely to precipitate during single-stage aging at temperatures of 200 °C and 250 °C. The <em>β'</em> phase formed at 200 °C is denser, leading to higher strength, but requiring a longer aging time. For two-stage aging, which involves a primary-stage at 200 °C for 8 to 12 h followed by a second-stage at 250 °C for 10 h, the aging time is reduced to at least one-quarter of that required for single-stage aging at 200 °C, ensuring strength while improving ductility. The formation of very dense nano-sized <em>β'</em> phases during the primary-stage aging facilitates the densification of <em>β'</em> phases during the subsequent second-stage aging. Additionally, the shortened aging time hinders the precipitation of <em>β</em> phase along the grain boundaries, thus improving ductility.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"3 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.05.004","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, Mg-Gd-Y-Zn-Zr alloys face the issue of a long aging duration. To establish a short-time aging treatment route, the precipitation characteristics and their effects on mechanical properties during elevated-temperature heat treatment prior to low-temperature aging treatment, low-temperature single-stage aging treatment, and low-temperature two-stage aging treatment were studied. The following results were obtained: Wider intragranular lamellar phases, including 14-LPSO and γ′′ phases, are more easily obtained during long-term holding at heat treatment temperatures of 400 °C and 450 °C. Although these lamellar phases do not contribute to strengthening, they enhance ductility by hindering crack propagation. Micro-sized β phases precipitate more readily at heat treatment temperatures of 300 °C and 350 °C. Intragranular needle-like β phases are not effective strengthening phases, and β phase precipitating along grain boundaries form a networked distribution, which reduces ductility. The nano-sized β' phase, as the main strengthening phase, is more likely to precipitate during single-stage aging at temperatures of 200 °C and 250 °C. The β' phase formed at 200 °C is denser, leading to higher strength, but requiring a longer aging time. For two-stage aging, which involves a primary-stage at 200 °C for 8 to 12 h followed by a second-stage at 250 °C for 10 h, the aging time is reduced to at least one-quarter of that required for single-stage aging at 200 °C, ensuring strength while improving ductility. The formation of very dense nano-sized β' phases during the primary-stage aging facilitates the densification of β' phases during the subsequent second-stage aging. Additionally, the shortened aging time hinders the precipitation of β phase along the grain boundaries, thus improving ductility.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.