{"title":"A dual‐modality study on the neural features of cochlear implant simulated tone and consonant perception","authors":"Leqiang Cao, Qi Zheng, Yubo Wu, Hongxing Liu, Mingkun Guo, Yanru Bai, Guangjian Ni","doi":"10.1111/nyas.15380","DOIUrl":null,"url":null,"abstract":"Accurately perceiving lexical tones and consonants is critical for understanding speech in tonal languages. Cochlear implant (CI) users exhibit reduced phonetic perception due to spectral loss in CI encoding, yet the underlying neural mechanisms remain unclear. This study combined electroencephalography and functional near‐infrared spectroscopy (fNIRS) to investigate the neural processing mechanisms of CI‐simulated channelized speech in 26 normal‐hearing adults during the processing of tones (T1–T4) and consonants (“ba,” “da,” “ga,” “za”). Results showed that the N1 amplitude in auditory evoked potentials was significantly lower for channelized speech than a natural human voice (NH), particularly for T2 and T4 tones, indicating a weaker perception of channelized speech. Functional connectivity analysis revealed that an NH exhibited significantly higher synchrony in the δ and θ frequency bands than channelized speech, which was more pronounced in the right temporal lobe. This finding was also observed with “za” consonants. fNIRS results showed stronger right temporal lobe activation for channelized speech, suggesting that the brain requires greater auditory effort to process channelized speech. Combining both modalities revealed neural compensatory mechanisms underlying channelized speech—manifesting as “low‐efficiency perception with high cognitive load.” This study provides potential biomarkers for CI rehabilitation assessment and a foundation for future research.","PeriodicalId":8250,"journal":{"name":"Annals of the New York Academy of Sciences","volume":"19 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the New York Academy of Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1111/nyas.15380","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately perceiving lexical tones and consonants is critical for understanding speech in tonal languages. Cochlear implant (CI) users exhibit reduced phonetic perception due to spectral loss in CI encoding, yet the underlying neural mechanisms remain unclear. This study combined electroencephalography and functional near‐infrared spectroscopy (fNIRS) to investigate the neural processing mechanisms of CI‐simulated channelized speech in 26 normal‐hearing adults during the processing of tones (T1–T4) and consonants (“ba,” “da,” “ga,” “za”). Results showed that the N1 amplitude in auditory evoked potentials was significantly lower for channelized speech than a natural human voice (NH), particularly for T2 and T4 tones, indicating a weaker perception of channelized speech. Functional connectivity analysis revealed that an NH exhibited significantly higher synchrony in the δ and θ frequency bands than channelized speech, which was more pronounced in the right temporal lobe. This finding was also observed with “za” consonants. fNIRS results showed stronger right temporal lobe activation for channelized speech, suggesting that the brain requires greater auditory effort to process channelized speech. Combining both modalities revealed neural compensatory mechanisms underlying channelized speech—manifesting as “low‐efficiency perception with high cognitive load.” This study provides potential biomarkers for CI rehabilitation assessment and a foundation for future research.
期刊介绍:
Published on behalf of the New York Academy of Sciences, Annals of the New York Academy of Sciences provides multidisciplinary perspectives on research of current scientific interest with far-reaching implications for the wider scientific community and society at large. Each special issue assembles the best thinking of key contributors to a field of investigation at a time when emerging developments offer the promise of new insight. Individually themed, Annals special issues stimulate new ways to think about science by providing a neutral forum for discourse—within and across many institutions and fields.