Hyperspectral Imaging for Rapid Detection of Common Infected Bacteria Based on Fluorescence Effect.

Lin Tao, Decheng Wu, Hao Tang, Wendan Liu, Xudong Fu, Zheng Hu, Dengchao Huang, Lianyang Zhang
{"title":"Hyperspectral Imaging for Rapid Detection of Common Infected Bacteria Based on Fluorescence Effect.","authors":"Lin Tao, Decheng Wu, Hao Tang, Wendan Liu, Xudong Fu, Zheng Hu, Dengchao Huang, Lianyang Zhang","doi":"10.1002/jbio.202500164","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid and accurate detection of bacterial infections in wounds is crucial for clinical diagnosis. Traditional methods, such as bacterial culture and polymerase chain reaction (PCR), are invasive and time-consuming. In this study, we propose a non-invasive detection method for common bacteria in wound infections, combining fluorescence hyperspectral imaging (FHSI) with deep learning algorithms. FHSI technology captures fluorescence data from culture plates for eight bacterial species, extracting spectral features within the 420-700 nm wavelength range. To manage the complex spatial and spectral data, we developed a Spatial-Spectral Multi-Scale Attention Network (SSMA-Net). Our method achieves an impressive 98.52% accuracy in bacterial classification under various growth conditions and 98.71% accuracy in species-level identification, with classification possible at bacterial concentrations as low as 10<sup>4</sup> CFU/mL. These results underscore the effectiveness of FHSI and deep learning for rapid, non-invasive bacterial typing, offering substantial potential for clinical applications.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500164"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid and accurate detection of bacterial infections in wounds is crucial for clinical diagnosis. Traditional methods, such as bacterial culture and polymerase chain reaction (PCR), are invasive and time-consuming. In this study, we propose a non-invasive detection method for common bacteria in wound infections, combining fluorescence hyperspectral imaging (FHSI) with deep learning algorithms. FHSI technology captures fluorescence data from culture plates for eight bacterial species, extracting spectral features within the 420-700 nm wavelength range. To manage the complex spatial and spectral data, we developed a Spatial-Spectral Multi-Scale Attention Network (SSMA-Net). Our method achieves an impressive 98.52% accuracy in bacterial classification under various growth conditions and 98.71% accuracy in species-level identification, with classification possible at bacterial concentrations as low as 104 CFU/mL. These results underscore the effectiveness of FHSI and deep learning for rapid, non-invasive bacterial typing, offering substantial potential for clinical applications.

基于荧光效应的高光谱成像快速检测常见感染细菌。
快速准确地检测伤口细菌感染对临床诊断至关重要。传统的方法,如细菌培养和聚合酶链反应(PCR),是侵入性和耗时的。在本研究中,我们提出了一种将荧光高光谱成像(FHSI)与深度学习算法相结合的伤口感染常见细菌的无创检测方法。FHSI技术捕获8种细菌培养板的荧光数据,提取420-700 nm波长范围内的光谱特征。为了管理复杂的空间和光谱数据,我们开发了一个空间-光谱多尺度注意力网络(SSMA-Net)。我们的方法在各种生长条件下的细菌分类准确率达到了令人印象的98.52%,在物种水平上的鉴定准确率达到了98.71%,细菌浓度低至104 CFU/mL即可分类。这些结果强调了FHSI和深度学习在快速、无创细菌分型方面的有效性,为临床应用提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信