Paola Busia, Gianluca Leone, Andrea Matticola, Luigi Raffo, Paolo Meloni
{"title":"Wearable Epilepsy Seizure Detection on FPGA with Spiking Neural Networks.","authors":"Paola Busia, Gianluca Leone, Andrea Matticola, Luigi Raffo, Paolo Meloni","doi":"10.1109/TBCAS.2025.3575327","DOIUrl":null,"url":null,"abstract":"<p><p>The development of epilepsy monitoring solutions suitable for everyday use is a very challenging task, where different constraints should be combined, resulting from the required accuracy standards, the unobtrusiveness of the monitoring device, and the efficiency of real-time operation. Considering the time-varying nature of the electroencephalography signal (EEG), Spiking Neural Networks (SNNs) represent a promising solution to model the evolution of the brain state based on the history of the previously processed signal. This work proposes an extremely lightweight SNN-based seizure detection solution, utilizing a simple encoding scheme to ensure high levels of sparsity. Despite the reduced complexity, the model provides a detection performance comparable with the state-of-the-art SNN-based approaches on the evaluated data from the CHB-MIT dataset, reaching a 96% area under the curve (AUC) and allowing 99.3% average accuracy, with the detection of 100% of the examined seizure events and a false alarm rate of 0.3 false positives per hour. The suitability for real-time inference execution on wearable monitoring devices was assessed on SYNtzulu, demonstrating 0.5 μs inference time with 4.55 nJ energy consumption.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2025.3575327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The development of epilepsy monitoring solutions suitable for everyday use is a very challenging task, where different constraints should be combined, resulting from the required accuracy standards, the unobtrusiveness of the monitoring device, and the efficiency of real-time operation. Considering the time-varying nature of the electroencephalography signal (EEG), Spiking Neural Networks (SNNs) represent a promising solution to model the evolution of the brain state based on the history of the previously processed signal. This work proposes an extremely lightweight SNN-based seizure detection solution, utilizing a simple encoding scheme to ensure high levels of sparsity. Despite the reduced complexity, the model provides a detection performance comparable with the state-of-the-art SNN-based approaches on the evaluated data from the CHB-MIT dataset, reaching a 96% area under the curve (AUC) and allowing 99.3% average accuracy, with the detection of 100% of the examined seizure events and a false alarm rate of 0.3 false positives per hour. The suitability for real-time inference execution on wearable monitoring devices was assessed on SYNtzulu, demonstrating 0.5 μs inference time with 4.55 nJ energy consumption.