Hypoxic breast cancer cell-derived exosomal miR-143-3p targets RICTOR to regulate M2 macrophage polarization, thereby modulating cancer cell invasiveness.
Hongyu Lian, Miao Yu, Qi Li, Jiayi Xiao, Xin Tang, Bin Zhang, Dongxue Liu, Yongliang Xu, Mo Dong, Zitao Li, Lihong Yao, Caijuan Li
{"title":"Hypoxic breast cancer cell-derived exosomal miR-143-3p targets RICTOR to regulate M2 macrophage polarization, thereby modulating cancer cell invasiveness.","authors":"Hongyu Lian, Miao Yu, Qi Li, Jiayi Xiao, Xin Tang, Bin Zhang, Dongxue Liu, Yongliang Xu, Mo Dong, Zitao Li, Lihong Yao, Caijuan Li","doi":"10.1007/s13577-025-01232-9","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxia is a critical mechanism within the microenvironment of tumors. Exosomes, serve as conduits for intercellular communication and transport the biomolecule miRNA by facilitating intercellular signal exchange, which partially regulate cancer metastasis. Our research investigated whether the role of hypoxic breast cancer cell-derived exosomal miR-143-3p in cancer progression. Real-time PCR explored miR-143-3p expression in hypoxia breast cancer cell-derived exosomes. Co-culturing of breast cancer with hypoxia exosome-primed M0 macrophages, transwell detected the invasiveness of breast cancer cells. Western blot showed the effect of hypoxia exosomes on the levels of M2 makers in macrophages and the epithelial-mesenchymal transition (EMT) indicators in breast cancer cells. Bioinformatics prediction and dual luciferase reporter assay determined the interaction between miR-143-3p and RICTOR. We found that exosomal miR-143-3p expression was downregulated in hypoxic conditions. Hypoxia breast cancer cell-derived exosomal miR-143-3p negatively correlated with the presentation of the M2 macrophage marker CD206 and regulated the levels of Arg-1, CD206 and CD163 mRNA levels. In addition, hypoxia exosome-mediated polarization of M2 macrophages promotes breast cancer cell migration and invasion. Mechanistically, miR-143-3p acted antagonistically with RICTOR, thereby suppressing macrophage M2 polarization. In summary, our study reveals that the hypoxia downregulates the exosomal miR-143-3p derived from breast cancer cells to increase macrophage RICTOR expression, thereby promoting M2 macrophage polarization to enhance breast cancer cell invasiveness, suggesting that miR-143-3p may be a candidate molecule for microRNA alternative therapy in breast cancer.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 4","pages":"114"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-025-01232-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hypoxia is a critical mechanism within the microenvironment of tumors. Exosomes, serve as conduits for intercellular communication and transport the biomolecule miRNA by facilitating intercellular signal exchange, which partially regulate cancer metastasis. Our research investigated whether the role of hypoxic breast cancer cell-derived exosomal miR-143-3p in cancer progression. Real-time PCR explored miR-143-3p expression in hypoxia breast cancer cell-derived exosomes. Co-culturing of breast cancer with hypoxia exosome-primed M0 macrophages, transwell detected the invasiveness of breast cancer cells. Western blot showed the effect of hypoxia exosomes on the levels of M2 makers in macrophages and the epithelial-mesenchymal transition (EMT) indicators in breast cancer cells. Bioinformatics prediction and dual luciferase reporter assay determined the interaction between miR-143-3p and RICTOR. We found that exosomal miR-143-3p expression was downregulated in hypoxic conditions. Hypoxia breast cancer cell-derived exosomal miR-143-3p negatively correlated with the presentation of the M2 macrophage marker CD206 and regulated the levels of Arg-1, CD206 and CD163 mRNA levels. In addition, hypoxia exosome-mediated polarization of M2 macrophages promotes breast cancer cell migration and invasion. Mechanistically, miR-143-3p acted antagonistically with RICTOR, thereby suppressing macrophage M2 polarization. In summary, our study reveals that the hypoxia downregulates the exosomal miR-143-3p derived from breast cancer cells to increase macrophage RICTOR expression, thereby promoting M2 macrophage polarization to enhance breast cancer cell invasiveness, suggesting that miR-143-3p may be a candidate molecule for microRNA alternative therapy in breast cancer.
期刊介绍:
Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well.
Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format.
Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.