RhDnostics: A Machine Learning-Based Predictive Algorithm Model for RhD-Negative and DEL Blood Group Screening.

IF 1.8 Q3 MEDICAL LABORATORY TECHNOLOGY
Meechoke Choodoung, Charuporn Promwong, Ketsaraporn Wongba, Arunsri Choodoung, Usanee Kerdpin, Peeradech Thichanpiang, Chotiros Plabplueng, Yann Fichou, Pornlada Nuchnoi
{"title":"RhDnostics: A Machine Learning-Based Predictive Algorithm Model for RhD-Negative and DEL Blood Group Screening.","authors":"Meechoke Choodoung, Charuporn Promwong, Ketsaraporn Wongba, Arunsri Choodoung, Usanee Kerdpin, Peeradech Thichanpiang, Chotiros Plabplueng, Yann Fichou, Pornlada Nuchnoi","doi":"10.1093/jalm/jfaf074","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The D-elution (DEL) phenotype is serologically mislabeled as Rh-negative because of the very low amount of D antigen on red blood cells. The adsorption-elution test and genotyping are recommended tests for confirmation. However, turnaround time and the availability of instruments, reagents, and budget, as well as technical issues are challenging factors of DEL identification in laboratory practice and patient safety.</p><p><strong>Methods: </strong>To develop a screening predictive algorithm for DEL and Rh-negative, the serological tests of RhCcEe antigen and adsorption-elution tests were computed using a machine learning model.</p><p><strong>Results: </strong>The machine learning algorithm computed the data based on RhCcEe antigen with or without a DEL confirmative serological test like the adsorption-elution test. The predictive accuracy gave >90% for RhD-negative identification in a Thai blood donor dataset. To screen for RhD-negative, we provided the web application named RhDnostics at https://rnp-project-1.streamlit.app/.</p><p><strong>Conclusion: </strong>Our machine learning algorithm could be used as a predictive tool for RhD-negative screening in the laboratory with no confirmative serological test or RHD molecular testing available.</p>","PeriodicalId":46361,"journal":{"name":"Journal of Applied Laboratory Medicine","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Laboratory Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jalm/jfaf074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The D-elution (DEL) phenotype is serologically mislabeled as Rh-negative because of the very low amount of D antigen on red blood cells. The adsorption-elution test and genotyping are recommended tests for confirmation. However, turnaround time and the availability of instruments, reagents, and budget, as well as technical issues are challenging factors of DEL identification in laboratory practice and patient safety.

Methods: To develop a screening predictive algorithm for DEL and Rh-negative, the serological tests of RhCcEe antigen and adsorption-elution tests were computed using a machine learning model.

Results: The machine learning algorithm computed the data based on RhCcEe antigen with or without a DEL confirmative serological test like the adsorption-elution test. The predictive accuracy gave >90% for RhD-negative identification in a Thai blood donor dataset. To screen for RhD-negative, we provided the web application named RhDnostics at https://rnp-project-1.streamlit.app/.

Conclusion: Our machine learning algorithm could be used as a predictive tool for RhD-negative screening in the laboratory with no confirmative serological test or RHD molecular testing available.

rhd诊断:一种基于机器学习的rhd阴性和DEL血型筛选预测算法模型。
背景:由于红细胞上的D抗原含量极低,因此D洗脱(DEL)表型在血清学上被误标记为rh阴性。建议采用吸附洗脱试验和基因分型进行确认。然而,周转时间、仪器、试剂的可用性和预算以及技术问题是实验室实践和患者安全中DEL识别的挑战性因素。方法:采用机器学习模型计算RhCcEe抗原血清学试验和吸附洗脱试验,建立DEL和rh阴性的筛选预测算法。结果:机器学习算法计算基于RhCcEe抗原的数据,有或没有DEL确认血清学试验如吸附洗脱试验。在泰国献血者数据集中,rhd阴性识别的预测准确率为bbb90 %。为了筛选RHD阴性,我们在https://rnp-project-1.streamlit.app/.Conclusion上提供了名为RhDnostics的web应用程序:我们的机器学习算法可以用作实验室中RHD阴性筛选的预测工具,没有确认的血清学测试或RHD分子测试可用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Laboratory Medicine
Journal of Applied Laboratory Medicine MEDICAL LABORATORY TECHNOLOGY-
CiteScore
3.70
自引率
5.00%
发文量
137
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信