Personalized medication recommendations for Parkinson's disease patients using gated recurrent units and SHAP interpretability.

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Atiye Riasi, Mehdi Delrobaei, Mehri Salari
{"title":"Personalized medication recommendations for Parkinson's disease patients using gated recurrent units and SHAP interpretability.","authors":"Atiye Riasi, Mehdi Delrobaei, Mehri Salari","doi":"10.1038/s41598-025-04217-8","DOIUrl":null,"url":null,"abstract":"<p><p>Managing Parkinson's disease (PD) through medication can be challenging due to varying symptoms and disease duration. This study aims to demonstrate the potential of sequence-by-sequence algorithms in recommending personalized medication combinations for patients with PD based on their previous visits. Our proposed method employs a gated recurrent unit model to predict accurate combinations of critical medication types for PD based on each patient's motor symptoms and prescribed medication from previous visits. We built a multi-label model with gated recurrent units on two data architectures: (1) personalized input using each patient's previous visits as a sample and (2) non-personalized input treating each visit as an independent sample. The 10-fold cross-validation results showed that the personalized architecture model outperforms the non-personalized model in accuracy (0.92), precision (0.94), recall (0.94), F1-score (0.94), Hamming loss (0.03), and macro average area under the receiver operating characteristic (0.94). To interpret the model's predictions, we employed SHapley Additive exPlanations (SHAP) values, which provide insights into the importance of variables both globally (across the entire model) and at the individual patient level. The results contribute to the sequential-based decision support system potentially enhancing the remote management of PD pharmacologic issues.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"19074"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125215/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-04217-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Managing Parkinson's disease (PD) through medication can be challenging due to varying symptoms and disease duration. This study aims to demonstrate the potential of sequence-by-sequence algorithms in recommending personalized medication combinations for patients with PD based on their previous visits. Our proposed method employs a gated recurrent unit model to predict accurate combinations of critical medication types for PD based on each patient's motor symptoms and prescribed medication from previous visits. We built a multi-label model with gated recurrent units on two data architectures: (1) personalized input using each patient's previous visits as a sample and (2) non-personalized input treating each visit as an independent sample. The 10-fold cross-validation results showed that the personalized architecture model outperforms the non-personalized model in accuracy (0.92), precision (0.94), recall (0.94), F1-score (0.94), Hamming loss (0.03), and macro average area under the receiver operating characteristic (0.94). To interpret the model's predictions, we employed SHapley Additive exPlanations (SHAP) values, which provide insights into the importance of variables both globally (across the entire model) and at the individual patient level. The results contribute to the sequential-based decision support system potentially enhancing the remote management of PD pharmacologic issues.

使用门控复发单位和SHAP可解释性的帕金森病患者的个性化用药建议。
由于症状和疾病持续时间的不同,通过药物治疗帕金森病(PD)可能具有挑战性。这项研究的目的是证明序列逐序列算法在根据PD患者以往就诊情况推荐个性化药物组合方面的潜力。我们提出的方法采用门控复发单元模型,根据每位患者的运动症状和以前就诊的处方药物,预测PD关键药物类型的准确组合。我们在两个数据架构上建立了一个带有门控循环单元的多标签模型:(1)将每个患者以前的就诊作为样本进行个性化输入;(2)将每次就诊作为独立样本进行非个性化输入。10倍交叉验证结果表明,个性化架构模型在准确率(0.92)、精密度(0.94)、召回率(0.94)、f1得分(0.94)、汉明损失(0.03)和接收者操作特征下的宏观平均面积(0.94)方面均优于非个性化模型。为了解释模型的预测,我们采用了SHapley加性解释(SHAP)值,它提供了对全局(整个模型)和个体患者水平变量重要性的见解。该结果有助于基于顺序的决策支持系统潜在地增强PD药理学问题的远程管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信