Lan Min Lai, Qian-Bing Dai, Mei Ling Cao, Yang Liu, Rui Zhao, Lei Yuan
{"title":"Clinical utility of metagenomic next-generation sequencing in pathogen detection for lower respiratory tract infections.","authors":"Lan Min Lai, Qian-Bing Dai, Mei Ling Cao, Yang Liu, Rui Zhao, Lei Yuan","doi":"10.1038/s41598-025-03564-w","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying pathogens in patients with lower respiratory tract infections (LRTIs) has always been a major challenge. Metagenomic next-generation sequencing (mNGS) technology is a new diagnostic tool that can assist clinicians in the etiological diagnosis of LRTIs. This study focuses on the clinical value of mNGS in the diagnosis of suspected LRTIs. A total of 400 patients with suspected LRTIs admitted at the First Affiliated Hospital of Nanchang University from July 2020 to February 2023 were enrolled in this retrospective study. Bronchoalveolar lavage fluid (BALF) samples were analyzed using both mNGS and culture methods. The diagnostic accuracy of two approaches was systematically compared against the final clinical diagnosis, which served as the gold-standard reference. Of the 400 enrolled cases, 82.3% (329/400) were diagnosed with LRTIs. From these cases, mNGS identified 76.8% (307/400) truepositive cases, 8.0% (32/400) falsepositive cases, 9.8% (39/400) truenegative cases, and 5.5% (22/400) falsenegative cases. mNGS demonstrated significantly higher sensitivity [93.3% (307/329) vs. 55.6(183/329)%] alongside greater negative predictive values [63.9% (39/61) vs.25.9%(51/197)], whereas culture offered higher specificity [54.9%(39/71) vs. 71.8%(51/71)]. The area under the receiver-operating curve (AUC) of mNGS[0.744(95%CI: 0.67-0.82)]was significantly higher than that of cultures[0.636(95%CI: 0.57-0.71)]. Specifically, mNGS detected more Streptococcus pneumoniae (7.0% vs. 0%), Haemophilus influenzae (6.7% vs. 0%), Aspergillus (9.4% vs. 3.5%), Pneumocystis jirovecii (11.9% vs. 0%) and other intracellular pathogens. Of the 329 patients with LRTIs, antibiotic treatment was modified based on the mNGS results in more than half of the patients(50.5%,166/329), including 20 cases of adjusted antimicrobial regimens, 70 cases de-escalated the empirical antibiotic treatment, and 76 patients escalated the treatment by increasing dosage or medication. 60.8%(101/166) of patients responded to modified antibiotic treatment. Significant benefits of mNGS have been shown in pathogen identification and antimicrobial treatment stewardship in patients with LRTIs. For those with suboptimal therapeutic responses, physicians should be alert to some emerging intracellular pathogens, including Chlamydia psittaci, Mycobacterium tuberculosis, and Pneumocystis jirovecii.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"19039"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125369/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-03564-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying pathogens in patients with lower respiratory tract infections (LRTIs) has always been a major challenge. Metagenomic next-generation sequencing (mNGS) technology is a new diagnostic tool that can assist clinicians in the etiological diagnosis of LRTIs. This study focuses on the clinical value of mNGS in the diagnosis of suspected LRTIs. A total of 400 patients with suspected LRTIs admitted at the First Affiliated Hospital of Nanchang University from July 2020 to February 2023 were enrolled in this retrospective study. Bronchoalveolar lavage fluid (BALF) samples were analyzed using both mNGS and culture methods. The diagnostic accuracy of two approaches was systematically compared against the final clinical diagnosis, which served as the gold-standard reference. Of the 400 enrolled cases, 82.3% (329/400) were diagnosed with LRTIs. From these cases, mNGS identified 76.8% (307/400) truepositive cases, 8.0% (32/400) falsepositive cases, 9.8% (39/400) truenegative cases, and 5.5% (22/400) falsenegative cases. mNGS demonstrated significantly higher sensitivity [93.3% (307/329) vs. 55.6(183/329)%] alongside greater negative predictive values [63.9% (39/61) vs.25.9%(51/197)], whereas culture offered higher specificity [54.9%(39/71) vs. 71.8%(51/71)]. The area under the receiver-operating curve (AUC) of mNGS[0.744(95%CI: 0.67-0.82)]was significantly higher than that of cultures[0.636(95%CI: 0.57-0.71)]. Specifically, mNGS detected more Streptococcus pneumoniae (7.0% vs. 0%), Haemophilus influenzae (6.7% vs. 0%), Aspergillus (9.4% vs. 3.5%), Pneumocystis jirovecii (11.9% vs. 0%) and other intracellular pathogens. Of the 329 patients with LRTIs, antibiotic treatment was modified based on the mNGS results in more than half of the patients(50.5%,166/329), including 20 cases of adjusted antimicrobial regimens, 70 cases de-escalated the empirical antibiotic treatment, and 76 patients escalated the treatment by increasing dosage or medication. 60.8%(101/166) of patients responded to modified antibiotic treatment. Significant benefits of mNGS have been shown in pathogen identification and antimicrobial treatment stewardship in patients with LRTIs. For those with suboptimal therapeutic responses, physicians should be alert to some emerging intracellular pathogens, including Chlamydia psittaci, Mycobacterium tuberculosis, and Pneumocystis jirovecii.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.