Frithjof Doerks, Fenna Harms, Michael Schwarze, Eike Jakubowitz, Bastian Welke
{"title":"Gait assessment using a 2D video-based motion analysis app in healthy subjects and subjects with lower limb amputation - A pilot study.","authors":"Frithjof Doerks, Fenna Harms, Michael Schwarze, Eike Jakubowitz, Bastian Welke","doi":"10.1371/journal.pone.0324499","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Although three-dimensional marker-based motion analysis is the gold standard for biomechanical investigations, it is time-consuming and cost-intensive. The conjunction of monocular video recordings with pose estimation algorithms addresses this gap. With the Orthelligent VISION app (OPED GmbH) a commercial and easy-to-use tool is now available for implementation in everyday clinical practice. The study investigates the accuracy of the 2D video-based system in measuring joint kinematics, expressed as range of motion, compared to an optoelectronic 3D motion analysis system as the gold standard.</p><p><strong>Materials and methods: </strong>Its accuracy was determined by synchronously measuring ten healthy subjects with Orthelligent and the optoelectronic 3D motion analysis system Qualisys (Qualisys AB) during level walking and at different treadmill walking speeds (1 m/s; 1.4 m/s; 1.8 m/s). Range of motion (RoM) of lower limb joints and time-distance parameters were compared using Bland-Altman plots, t-tests, and correlations between systems. Kinematic outputs of two subjects with a lower limb amputation were also analyzed.</p><p><strong>Results: </strong>The mean RoM deviation was smaller for the knee (3.8°) and hip joints (3.7°) than for the ankle joint (5.4°), but differed significantly between systems in most conditions. The correlation range was 0.36 ≤ r ≤ 0.83, with best results for 1 m/s treadmill walking (mean r = 0.71 across joints). While the accuracy was affected by high inter-subject variability, individual RoM changes from slow to fast walking did not differ between the systems. The kinematics of the prosthetic and sound leg of individuals with an amputation exhibited characteristic patterns in the video-based system, even though side differences were smaller compared to the optoelectronic measurement.</p><p><strong>Conclusions: </strong>The rather high inter-subject variability would make future comparisons between individuals challenging. Nonetheless, the app shows potential for intra-subject progress monitoring.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 5","pages":"e0324499"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12124523/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0324499","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Although three-dimensional marker-based motion analysis is the gold standard for biomechanical investigations, it is time-consuming and cost-intensive. The conjunction of monocular video recordings with pose estimation algorithms addresses this gap. With the Orthelligent VISION app (OPED GmbH) a commercial and easy-to-use tool is now available for implementation in everyday clinical practice. The study investigates the accuracy of the 2D video-based system in measuring joint kinematics, expressed as range of motion, compared to an optoelectronic 3D motion analysis system as the gold standard.
Materials and methods: Its accuracy was determined by synchronously measuring ten healthy subjects with Orthelligent and the optoelectronic 3D motion analysis system Qualisys (Qualisys AB) during level walking and at different treadmill walking speeds (1 m/s; 1.4 m/s; 1.8 m/s). Range of motion (RoM) of lower limb joints and time-distance parameters were compared using Bland-Altman plots, t-tests, and correlations between systems. Kinematic outputs of two subjects with a lower limb amputation were also analyzed.
Results: The mean RoM deviation was smaller for the knee (3.8°) and hip joints (3.7°) than for the ankle joint (5.4°), but differed significantly between systems in most conditions. The correlation range was 0.36 ≤ r ≤ 0.83, with best results for 1 m/s treadmill walking (mean r = 0.71 across joints). While the accuracy was affected by high inter-subject variability, individual RoM changes from slow to fast walking did not differ between the systems. The kinematics of the prosthetic and sound leg of individuals with an amputation exhibited characteristic patterns in the video-based system, even though side differences were smaller compared to the optoelectronic measurement.
Conclusions: The rather high inter-subject variability would make future comparisons between individuals challenging. Nonetheless, the app shows potential for intra-subject progress monitoring.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage