Ying Liu, Xuhui Feng, Han Wu, Tianxiang Gui, Mingfeng Fu, Xudong Luo, Lei Zhao, Li-Ming Chen
{"title":"IRBITs, signaling molecules of great functional diversity.","authors":"Ying Liu, Xuhui Feng, Han Wu, Tianxiang Gui, Mingfeng Fu, Xudong Luo, Lei Zhao, Li-Ming Chen","doi":"10.1007/s00424-025-03095-3","DOIUrl":null,"url":null,"abstract":"<p><p>IRBIT1 and IRBIT2 (collectively, the IRBITs) are signaling molecules with great universality in their expression (ubiquitous distribution in all major tissues in animals) and considerable versatility in their biological functions. Structurally, the IRBITs are highly homologous to S-adenosyl-L-homocysteine hydrolase (AHCY). However, the IRBITs had lost the catalytic activity during the evolution but gained new functions by the addition of a unique N-terminal IRBIT domain. By direct protein interaction, the IRBITs modulate the functions of an array of target proteins of distinct biological functions, ranging from membrane channels and transporters to cytosolic protein kinase, lipid kinases, ribonucleotide reductase, etc. The interaction of the IRBITs with specific target proteins is modulated by the redox couple NAD<sup>+</sup>/NADH. The IRBITs are involved in the regulation of many cellular processes, such as Ca<sup>2+</sup> signaling, intracellular pH regulation, transepithelial transport of electrolytes and fluid, apoptosis, and DNA metabolism. However, what we have known about the IRBITs is likely just the tip of the iceberg. The present review covers the expression and distribution, physiological and pathological roles, and the structural organization of the IRBITs. It provides a comprehensive review on the binding partners of the IRBITs. Finally, the review addresses the evolution of the IRBITs in reference to the evolution of AHCY.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-025-03095-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
IRBIT1 and IRBIT2 (collectively, the IRBITs) are signaling molecules with great universality in their expression (ubiquitous distribution in all major tissues in animals) and considerable versatility in their biological functions. Structurally, the IRBITs are highly homologous to S-adenosyl-L-homocysteine hydrolase (AHCY). However, the IRBITs had lost the catalytic activity during the evolution but gained new functions by the addition of a unique N-terminal IRBIT domain. By direct protein interaction, the IRBITs modulate the functions of an array of target proteins of distinct biological functions, ranging from membrane channels and transporters to cytosolic protein kinase, lipid kinases, ribonucleotide reductase, etc. The interaction of the IRBITs with specific target proteins is modulated by the redox couple NAD+/NADH. The IRBITs are involved in the regulation of many cellular processes, such as Ca2+ signaling, intracellular pH regulation, transepithelial transport of electrolytes and fluid, apoptosis, and DNA metabolism. However, what we have known about the IRBITs is likely just the tip of the iceberg. The present review covers the expression and distribution, physiological and pathological roles, and the structural organization of the IRBITs. It provides a comprehensive review on the binding partners of the IRBITs. Finally, the review addresses the evolution of the IRBITs in reference to the evolution of AHCY.
期刊介绍:
Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.