Context-dependent PSIICOS: A novel framework for functional connectivity estimation accounting for task-related power leakage

IF 4.7 2区 医学 Q1 NEUROIMAGING
Daria Kleeva , Alexei Ossadtchi
{"title":"Context-dependent PSIICOS: A novel framework for functional connectivity estimation accounting for task-related power leakage","authors":"Daria Kleeva ,&nbsp;Alexei Ossadtchi","doi":"10.1016/j.neuroimage.2025.121268","DOIUrl":null,"url":null,"abstract":"<div><div>Functional connectivity (FC) analysis using non-invasive neuroimaging methods, such as MEG and EEG, is often confounded by artifacts from spatial leakage and task-related power modulations. To address these limitations, we present Context-Dependent PSIICOS (CD-PSIICOS), a novel framework that improves the estimation of FC by incorporating task-specific cortical power distributions into the projection operator applied to the vectorized sensor-space cross-spectrum. Unlike the original PSIICOS (Phase Shift Invariant Imaging of Coherent Sources) approach, designed to suppress spatial leakage from all the sources, CD-PSIICOS dynamically adjusts the projection based on the active source distribution, enabling more accurate suppression of spatial leakage while preserving true zero-phase interactions. We validated CD-PSIICOS using realistic simulations and a multi-subject MEG dataset. The results demonstrate that CD-PSIICOS outperforms the original PSIICOS in suppressing artifacts at the lower projection ranks, maintaining robust detection of functional networks across theta and gamma frequency bands. By requiring lower projection ranks for optimal performance, CD-PSIICOS facilitates the reconstruction of physiologically relevant networks with improved sensitivity and stability.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"316 ","pages":"Article 121268"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S105381192500271X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Functional connectivity (FC) analysis using non-invasive neuroimaging methods, such as MEG and EEG, is often confounded by artifacts from spatial leakage and task-related power modulations. To address these limitations, we present Context-Dependent PSIICOS (CD-PSIICOS), a novel framework that improves the estimation of FC by incorporating task-specific cortical power distributions into the projection operator applied to the vectorized sensor-space cross-spectrum. Unlike the original PSIICOS (Phase Shift Invariant Imaging of Coherent Sources) approach, designed to suppress spatial leakage from all the sources, CD-PSIICOS dynamically adjusts the projection based on the active source distribution, enabling more accurate suppression of spatial leakage while preserving true zero-phase interactions. We validated CD-PSIICOS using realistic simulations and a multi-subject MEG dataset. The results demonstrate that CD-PSIICOS outperforms the original PSIICOS in suppressing artifacts at the lower projection ranks, maintaining robust detection of functional networks across theta and gamma frequency bands. By requiring lower projection ranks for optimal performance, CD-PSIICOS facilitates the reconstruction of physiologically relevant networks with improved sensitivity and stability.
上下文相关PSIICOS:一种考虑任务相关功率泄漏的功能连接估计新框架。
功能连接(FC)分析使用非侵入性神经成像方法,如MEG和EEG,经常被空间泄漏和任务相关功率调制的伪影所混淆。为了解决这些限制,我们提出了上下文相关的PSIICOS (CD-PSIICOS),这是一个新的框架,通过将特定任务的皮质功率分布纳入应用于矢量化传感器空间交叉光谱的投影算子中来改进FC的估计。与原始的PSIICOS(相移不变成像相干源)方法不同,CD-PSIICOS方法旨在抑制所有源的空间泄漏,它根据有源分布动态调整投影,从而在保持真正的零相相互作用的同时更准确地抑制空间泄漏。我们使用现实模拟和多主题MEG数据集验证了CD-PSIICOS。结果表明,CD-PSIICOS在抑制较低投影阶的伪像方面优于原始PSIICOS,并保持了对theta和gamma频段功能网络的鲁棒检测。CD-PSIICOS通过要求较低的投影等级来获得最佳性能,从而促进了生理相关网络的重建,提高了灵敏度和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信