Diego Méndez , Natalia Uriarte , Marcela Espino , Mauricio Ramos , Federico Lecumberry , Javier Nogueira
{"title":"Prenatal valproate exposure alters barrel cortex morphology in rats","authors":"Diego Méndez , Natalia Uriarte , Marcela Espino , Mauricio Ramos , Federico Lecumberry , Javier Nogueira","doi":"10.1016/j.neulet.2025.138277","DOIUrl":null,"url":null,"abstract":"<div><div>Autism Spectrum Disorder (ASD) is a neurodevelopmental condition influenced by genetic and environmental factors. Prenatal exposure to valproic acid (VPA) has been linked to morphological and behavioral abnormalities resembling ASD symptoms in humans. The whisker somatosensory system in rodents serves as an optimal model for studying ASD-related sensory alterations due to its well-defined modular and somatotopic organization. In this study, we analyzed whisker cortical maps in VPA-exposed rats using cytochrome oxidase histochemistry. Our results revealed significant alterations in the primary somatosensory cortex, including a reduction in total whisker map area and poorly defined cortical barrels. Additionally, some adjacent barrels exhibited fusion, and barrel row curvature was significantly reduced, suggesting disrupted somatotopic organization. These findings align with previous studies in genetic ASD models, such as Mecp2-knockout mice, which show reduced thalamocortical connectivity and structural changes in layer IV neurons. Moreover, recent research suggests that sensory deficits in ASD may also involve dysfunctions in the peripheral nervous system. Our study highlights the relevance of somatosensory cortical map alterations in environmentally induced ASD models. Further investigations into both central and peripheral nervous system contributions could provide valuable insights into the sensory deficits underlying ASD.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"859 ","pages":"Article 138277"},"PeriodicalIF":2.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030439402500165X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition influenced by genetic and environmental factors. Prenatal exposure to valproic acid (VPA) has been linked to morphological and behavioral abnormalities resembling ASD symptoms in humans. The whisker somatosensory system in rodents serves as an optimal model for studying ASD-related sensory alterations due to its well-defined modular and somatotopic organization. In this study, we analyzed whisker cortical maps in VPA-exposed rats using cytochrome oxidase histochemistry. Our results revealed significant alterations in the primary somatosensory cortex, including a reduction in total whisker map area and poorly defined cortical barrels. Additionally, some adjacent barrels exhibited fusion, and barrel row curvature was significantly reduced, suggesting disrupted somatotopic organization. These findings align with previous studies in genetic ASD models, such as Mecp2-knockout mice, which show reduced thalamocortical connectivity and structural changes in layer IV neurons. Moreover, recent research suggests that sensory deficits in ASD may also involve dysfunctions in the peripheral nervous system. Our study highlights the relevance of somatosensory cortical map alterations in environmentally induced ASD models. Further investigations into both central and peripheral nervous system contributions could provide valuable insights into the sensory deficits underlying ASD.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.